Indicators of Energy Efficiency in Buildings. Comparison with Standards in Force in Argentina

Abstract

In this work we make a comparative study of the energy behaviour in different building types. We analyze three cases of office buildings and three residential buildings, and compare them with a previous sample. We seek to find correlations or differences in behavior in terms of potential energy losses and gains, and UL values compared with Argentinian Standards to verify the degree of efficiency. For energy analysis we used a software which allows the analysis of thermal and energy building performance at steady state on a monthly basis. This software is called EnergoCAD and it also determines formal indicators based on IRAM standards. We conclude that the indicators used are clear to energetically grade buildings and to facilitate comparisons. In turn, smaller buildings are relatively less energy efficient than larger ones. At the same time it is noteworthy that the energy inefficiency has been growing rapidly over the years. Finally it is noted that none of the cases analyzed meets the National Standards.

Share and Cite:

Salvetti, M. , Czajkowski, J. and Gómez, A. (2013) Indicators of Energy Efficiency in Buildings. Comparison with Standards in Force in Argentina. Open Journal of Energy Efficiency, 2, 163-170. doi: 10.4236/ojee.2013.24021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] IPCC, “Tercer Informe de Evaluación del Intergovernmental Panel on Climate Change: Cambio Climático,” Geneva, 2001.
[2] A. Vergara and J. De Las Rivas, Territorios Inteligentes. La Ciudad Sostenible,” Fundación Metrópoli, Madrid, 2004.
[3] L. Perez-Lomnard, et al., “A Review on Buildings Energy Consumption Information,” Journal Energy and Buildings, Vol. 40, No. 3, 2008, pp. 394-398.
[4] B. Edwards, “Guía Básica de la Sostenibilidad,” Gustavo Gili, 2008.
[5] Secretaría de Energía de la Nación, “Informe de Auditoría de Gestión del Programa de Políticas Energéticas,” Ministerio de Planificación Federal Inversión Pública y Servicios, Buenos Aires, 2008.
[6] J. Kneifel, “Life-cycle Carbon and Cost Analysis of Energy Efficiency Measures in New Commercial Buildings,” Journal Energy and Buildings, Vol. 42, No. 3, 2010, pp. 333-340.
[7] J. F. Liernur, “Voz ‘Torre’,” Diccionario de Arquitectura en la Argentina, Editorial Clarín, Buenos Aires, 2004.
[8] E. Rosenfeld and J. Czajkowski, “Catálogo de Tipologías de Viviendas Urbanas en el área Metropolitana de Buenos Aires,” Su Funcionamiento Energético y Bioclimático, IDEHAB-FAU-UNLP, La Plata, 1992.
[9] IRAM 11659-2, “Aislamiento Térmico de Edificios. Verificación de sus Condiciones Higrotérmicas. Ahorro de Energía en Refrigeración. Parte 2: Viviendas,” Instituto Argentino de Normalización y Certificación, Buenos Aires, 2007.
[10] IRAM 11604, “Aislamiento Térmico de Edificios. Verificación de sus Condiciones Higrotérmicas. Ahorro de Energía en Calefacción. Coeficiente Volumétrico G de Pérdidas de Calor. Cálculo y valores Límites,” Instituto Argentino de Normalización y Certificación, Buenos Aires, 1990 (Under Review; 2013).
[11] C. Corredera and J. Czajkowski, “Evolución en el Diseno de Torres de Oficinas en la Argentina Desde un Enfoque Ambiental,” ENCAC, Curitiba, 2003.
[12] J. Czajkowski, et al., “EnergoCAD. Sistema Informatizado Para el Diseno Bioclimático de Alternativas Edilicias,” 15a Reunión de ASADES, Catamarca, 1992.
[13] M. C. Peel, et al., “Updated World Map of the Koppen-Geiger Climate Classification,” Hydrology and Earth System Sciences, Vol. 11, No. 5, 2007, pp. 1633-1644.
http://www.hydrol-earth-syst-sci.net/11/1633/2007/hess-11-1633-2007.html?

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.