A Novel Adjustable Plasmonic Filter Realization by Split Mode Ring Resonators

Abstract

A novel nanoscale plasmonic filter consisting of two coupled metal-insulator-metal (MIM) waveguides is introduced. The new structure functionality is verified by numerical simulations in different configurations of the filter. The impedance variation characteristic named as split mode ring resonancy is achieved by partially narrowing or expanding the waveguide diameter. The main parameters of the filter are evaluated by using the parameters of an implemented type of ring resonator. Moreover, modal analysis for Surface Plasmon Polariton (SPP) propagation is performed while changing the main spatial parameters of the device.

Share and Cite:

M. Janipour, M. Karami, R. Sofiani and F. Kashani, "A Novel Adjustable Plasmonic Filter Realization by Split Mode Ring Resonators," Journal of Electromagnetic Analysis and Applications, Vol. 5 No. 12, 2013, pp. 405-414. doi: 10.4236/jemaa.2013.512063.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. I. Bozhevolnyi, “Plasmonic Nanoguides and Circuits,” In: S. I. Bozhevolnyi, Ed., Plasmonics and Metamaterials, Pan Stanford Publishing, Singapore City, 2008.
http://dx.doi.org/10.1142/9789814241335
[2] H. Raether, “Surface Plasmon Smooth and Rough Surfaces and on Gratings,” Springer-Verlag, Berlin, 1988.
[3] E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science, Vol. 311, No. 5758, 2006, pp. 189-193.
http://dx.doi.org/10.1126/science.1114849
[4] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel and A. G. Requicha, “Local Detection of Electromagnetic Energy Transport below the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides,” Nature, Vol. 2, No. 4, 2003, pp. 229-232.
http://dx.doi.org/10.1038/nmat852
[5] M. Quinten, A. Leitner, J. R. Krenn and F. R. Aussenegg, “Electromagnetic Energy Transport via Linear Chains of Silver Nanoparticles,” Optics Letters, Vol. 23, No. 17, 1998, pp. 1331-1333.
http://dx.doi.org/10.1364/OL.23.001331
[6] S. A. Maier, P. G. Kik and H. A. Atwater, “Optical Pulse Propagation in Metal Nanoparticle Chain Waveguides,” Physical Review B, Vol. 67, No. 20, 2003, Article ID: 205402. http://dx.doi.org/10.1103/PhysRevB.67.205402
[7] D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno and Esteban Moreno, “Domino Plasmons for Sub Wavelength Terahertz Circuitry,” Optics Express, Vol. 18, No. 1, 2010, pp. 754-764.
http://dx.doi.org/10.1364/OE.18.000754
[8] D. F. P. Pile and D. K. Gramotev, “Channel Plasmon-Polariton in a Triangular Groove on a Metal Surface,” Optics Express, Vol. 29, No. 10, 2004, pp. 1069-1071.
http://dx.doi.org/10.1364/OL.29.001069
[9] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux and T. W. Ebbesen, “Channel Plasmon-Polariton Guiding by Sub-Wavelength Metal Grooves,” Physical Review Letters, Vol. 95, No. 4, 2005, Article ID: 046802.
http://dx.doi.org/10.1103/PhysRevLett.95.046802
[10] D. K. Gramotev and D. F. P. Pile, “Single-Mode Sub-Wavelength Waveguide with Channel Plasmon-Polaritons in Triangular,” Applied Physics Letters, Vol. 85, 2004, pp. 6323-6325.
http://dx.doi.org/10.1063/1.1839283
[11] E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater and A. Polman, “Near-Field Visualization of Strongly Confined Surface Plasmon-Polaritons in Metal-Insulator-Metal Waveguides,” NanoLetters, Vol. 8, No. 9, 2008, pp. 2925-2929. http://dx.doi.org/10.1021/nl801781g
[12] J. A. Dionne, L. A. Sweatlock, H. A. Atwater and A. Polman, “Plasmon Slot Waveguides: Towards Chip-Scale Propagation with Subwavelength-Scale Localization,” Physical Review B, Vol. 73, No. 3, 2006, Article ID: 035407. http://dx.doi.org/10.1103/PhysRevB.73.035407
[13] Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui and M. Nakagaki, “Characteristics of Gap Plasmon Waveguide with Stub Structures,” Optics Express, Vol. 16, No. 21, 2008, pp. 16314-16325.
http://dx.doi.org/10.1364/OE.16.016314
[14] T. B. Wang, X. W. Wen, C. P. Yin and H. Z. Wang, “The Transmission Characteristics of Surface Plasmon Polaritons in Ring Resonator,” Optics Express, Vol. 17, No. 26, 2009, pp. 24096-24101.
http://dx.doi.org/10.1364/OE.17.024096
[15] X. Lin and X. Huang, “Tooth-Shaped Plasmonic Waveguide Filter with Nanometric Sizes,” Optics Express, Vol. 33, No. 23, 2008, pp. 2874-2876.
http://dx.doi.org/10.1364/OL.33.002874
[16] J. Tao, X. G. Huang, X. Lin, Q. Zhang and X. Jin, “A Narrow-Band Subwavelength Plasmonic Waveguide Filter with Asymmetrical Multiple Teeth-Shaped Structure,” Optics Express, Vol. 17, No. 16, 2009, pp. 13989-13994.
http://dx.doi.org/10.1364/OE.17.013989
[17] P. H. Lee and Y. C. Lan, “Plasmonic Waveguide Filters Based on Tunneling and Cavity Effects,” Springer, Vol. 5, 2010, pp. 417-422.
[18] A. Setayesh, S. R. Mirnaziry and M. S. Abrishamian, “Nu-Merical Investigation of Tunable Band-Pass\Band-Stop Plasmonic Filters with Hollow-Core Circular Ring Resonator,” Optical Society of Korea, Vol. 15, No. 1, 2011, pp. 82-89.
http://dx.doi.org/10.3807/JOSK.2011.15.1.082
[19] A. Hosseini and Y. Massoud, “Nanoscale Surface Plasmon Based Resonator Using Rectangular Geometry,” Applied Physical Letters, Vol. 90, No. 18, 2007, Article ID: 181102. http://dx.doi.org/10.1063/1.2734380
[20] A. V. Krasavin and A. V. Zayats, “Electro-Optic Switching Element for Dielectric-Loaded Surface Plasmon Polariton Waveguides,” Applied Physical Letters, Vol. 96, No. 4, 2010, Article ID: 041107.
http://dx.doi.org/10.1063/1.3464552
[21] Q. Li, T. Wang, Y. Su, M. Yan and M. Qiu, “Coupled Mode Theory Analysis of Mode-Splitting in Coupled Cavity System,” Optics Express, Vol. 18, No. 8, 2010, pp. 8367-8382. http://dx.doi.org/10.1364/OE.18.008367
[22] H. Lu, X. Liu, D. Mao, L. Wang and Y. Gong, “Tunable Band-Pass Plasmonic Waveguide Filters with Nanodisk Resonators,” Optics Express, Vol. 18, No. 17, 2010, pp. 17922-17927. http://dx.doi.org/10.1364/OE.18.017922
[23] I. Wolff and N. Knoppik, “Microstrip Ring Resonator and Dispersion Measurement on Microstrip Lines,” Electronics Letters, Vol. 7, No. 26, 1971, pp. 779-781.
http://dx.doi.org/10.1049/el:19710532
[24] A. Taflove and S. C. Hagness, “Computational Electrodynamics: The Finite-Difference Time-Domain Method,” Artech House, Norwood, 2005.
[25] A. Pannipitiya, I. D. Rukhlenko, M. Haroldo, T. Hattori and G. P. Agrawal, “Improved Transmission Model for Metal-Dielectric-Metal Plasmmonic Waveguides with Stub Structures,” Optics Express, Vol. 18, No. 6, 2010, pp. 6191-620. http://dx.doi.org/10.1364/OE.18.006191

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.