Share This Article:

Conduction Mechanism Analysis of Inversion Current in MOS Tunnel Diodes

Abstract Full-Text HTML XML Download Download as PDF (Size:434KB) PP. 794-801
DOI: 10.4236/msa.2013.412101    3,730 Downloads   5,132 Views   Citations

ABSTRACT

Self inversion issue and excess capacitance phenomenon were observed for the first time in relatively thick silicon dioxide (SiO2) in the form of MOS (metal(Al)/SiO2/p type crystalline silicon) structure. Both phenomena were based on minority carriers (electrons in this case) and studied through DC current-applied bias voltage (I-V) and AC admittance measurements in dark/light condition as a function of ambient temperature (295 - 380 K). Either of the cases was the departure of traditional MOS analysis, manifesting themselves in the inversion regime of MOS diode. Increase in frequency/temperature/light intensity within dark and light conditions led to weaken the maxima of hump in C-V curves and finally turned into deep depletion mode after exceeding threshold value of frequency/temperature/light intensity. In resumed conditions, supplementary I-V measurements were carried out to describe the generation and conduction mechanism(s) for minority carriers (electrons).

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Saatci, O. Özdemir and K. Kutlu, "Conduction Mechanism Analysis of Inversion Current in MOS Tunnel Diodes," Materials Sciences and Applications, Vol. 4 No. 12, 2013, pp. 794-801. doi: 10.4236/msa.2013.412101.

References

[1] C.W. Liu, M. H. Lee, M.-J. Chen, I. C. Lin and C.-F. Lin, “Room Temperature Electroluminescence from ElecronHole Plasmas in the Metal Oxide Silicon Tunneling Diodes,” Applied Physics Letters, Vol. 76, No. 12, 2000, pp. 1516-1518. http://dx.doi.org/10.1063/1.126081
[2] C. W. Liu, M. H. Lee, M.-J. Chen, C.-F. Lin and M. Y. Chern, “Roughness-Enhanced Electroluminescence from Metal Oxide Silicon Tunneling Diodes,” IEEE Electron Device Letters, Vol. 21, No. 12, 2000, pp. 601-603.
http://dx.doi.org/10.1109/55.887479
[3] C. W. Liu, W. T. Liu, M. H. Lee, W. S. Kuo and B. C. Hsu, “A Novel Photodetector Using MOS Tunneling Structures,” IEEE Electron Device Letters, Vol. 21, No. 6, 2000, pp. 307-309. http://dx.doi.org/10.1109/55.843159
[4] B. Kuhlmann, A. G. Aberle, R. Hezel and G. Heiser, “Simulation and Optimization of Metal-Insulator-Semiconductor Inversion-LayerSilicon Solar Cells,” IEEE Transactions on Electron Devices, Vol. 47, No. 11, 2000, pp. 2167-2178. http://dx.doi.org/10.1109/16.877180
[5] O. M. Nielsen, “Current Mechanism of Tunnel m.i.s, Solar Cells,” IEEPROC, Vol. 127, No. 6, 1980, Part I.
[6] O. M. Nielsen, “Current Mechanism of Tunnel MIS Solar Cell,” PROC, Vol. 129, Pt. I, No. 4, A UGUST1982.
[7] M. A. Green, F. D. King and J. Shewchun, “Minority Carrier MIS Tunnel Diodes and Their Application to Electronand Photo-Voltaic Energy Conversion-I. Theory,” Solid-State Electronics, Vol. 17, No. 6, 1974, pp. 551-561. http://dx.doi.org/10.1016/0038-1101(74)90172-5
[8] J. Shewchun, M. A. Green and F. D. King, “Minority Carrier MIS Tunnel Diodes and Their Application to Electronand Photo-Voltaic Energy Conversion-II. Experiment,” Solid-State Electronics, Vol. 17, No. 6, 1974, pp. 563-572.
http://dx.doi.org/10.1016/0038-1101(74)90173-7
[9] S. R. Hofstein, K. H. Zaininger and G. Warfield, “Frequency Response of the Surface Inversion Layer in Silicon,” Proceedings of IEEE, Vol. 52, 1964, pp. 971-972.
[10] E. H. Nicollian and A. Goetzberger, “Lateral AC Current Flow Model for Metal-Insulator-Semiconductor Capacitors,” IEEE Transactions on Electron Devices, Vol. 12, No. 3, 1965, p. 108.
http://dx.doi.org/10.1109/T-ED.1965.15465
[11] O. Ozdemir, I. Atilgan and B. katircioglu, “Abnormal Frequency Dispersion of the Admittance Associated with a Chromiumplasma Deposited a-SiNx:Hp-Si Structure,” Journal of Non-Crystalline Solids, Vol. 353, 2007, pp. 2751-2757.
[12] O. Ozdemir, I. Atilgan, B. Akaoglu, K. Sel and B. Katircioglu, “Frequency Dependence of Conductivity in Intrinsic Amorphous Silicon Carbide Film, Assessed through Admittance Measurement of Metal Insulator Semiconductor Structure,” Thin Solid Films, Vol. 497, 2006, pp. 149-156. http://dx.doi.org/10.1016/j.tsf.2005.10.065
[13] O. Ozdemir, M. Anutgan, T. Aliyeva-Anutgan, I. Atilgan and B. Katircioglu, “Electrical Transport Mechanism in Boron Nitride Thin Film,” Journal of Non-Crystalline Solids, Vol. 355, 2009, pp. 851-859.
http://dx.doi.org/10.1016/j.jnoncrysol.2009.04.034
[14] J. Shewchun and M. A. Green, “Temperature Dependence of Current Flows in Nondegenarate MIS Tunnel Diodes,” Journal of Applied Physics, Vol. 46, No. 12, 1975, pp. 5179-5184.
http://dx.doi.org/10.1063/1.322195
[15] M. A. Green and J. Shewchun, “Capacitance Properties of MIS Tunnel Diodes,” Journal of Applied Physics, Vol. 46, No. 12, 1975, pp. 5185-5190.
http://dx.doi.org/10.1063/1.321583
[16] H. Matsuura, T. Okuno, H. Okushi and K. Tanaka, “Electrical Properties of n-Amorphous/p-Crystalline Silicon Heterojunctions,” Journal of Applied Physics, Vol. 55, No. 4, 1984, pp. 1012-1019.
http://dx.doi.org/10.1063/1.333193
[17] Y. J. Song, M. R. Park, E. Guliants and W. A. Anderson, “Influence of Defects and Band Offsets on Carrier Transport Mechanisms in Amorphous Silicon/Crystalline Heterojunction Solar Cells,” Solar Energy Materials & Solar Cells, Vol. 64, 2000, pp. 225-240.
http://dx.doi.org/10.1016/S0927-0248(00)00222-1
[18] S. Park, E. Cho, D.n Song, G. Conibeer and M. A. Green, “n-Type Silicon Quantum Dots and p-Type Crystalline Silicon Heteroface Solar Cells,” Solar Energy Materials & Solar Cells, Vol. 93, No. 6-7, 2009, pp. 684-690.
http://dx.doi.org/10.1016/j.solmat.2008.09.032
[19] C. Flyn, D. Konig, I. Perez-Wurfl, G. Conibeer and M. A. Green, “Capacitance and Conductance Characteristics of Silicon Nanocrystal Metal-Insulator-Semiconductor Devices,” Solid-State Electronics, Vol. 53, 2009, pp. 530-539. http://dx.doi.org/10.1016/j.sse.2009.03.001
[20] C.-H. Lin, B.-C. Hsu, M. H. Lee and C. W. Liu, “A Comprehensive Study of Inversion Current in MOS Tunneling Diodes,” IEEE Transactions on Electron Devices, Vol. 48, No. 9, 2001, pp. 2125-2130.
http://dx.doi.org/10.1109/16.944205
[21] S. M. Sze, “Physics of Semiconductor Devices”, WileyInterscience, John Wiley & Sons, 1969.
[22] E. H. Nicollian and J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology,” John Wiley & Sons, New York, 1982.
[23] A. E. Saatci and O. Ozdemir, “Comparison of Sequential and Simultaneous High-Low Frequency Capacitance Voltage Method on MOS Structure,” Balkan Physics Letter, Vol. 18, 2010, pp. 360-367.
[24] M. A. Lambert, “ Current Injection in Solids,” Academic Press, New York, 1970.
[25] A. E. Saatci and O. Ozdemir, “The Cause of Frequency Response at 100 kHz for the Inversion Regime of MOS Structure,” Proceeding ICCE 2010.
[26] K. Jerzy “Amorphous and Microcrystalline Semiconductor Devices II Materials and Device Physics,” Artech House, Boston, 1992.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.