[1]
|
H. Sorimachi, S. Hata and Y. Ono, “Calpain Chronicle—An Enzyme Family under Multidisciplinary Characterization,” Proceedings of Japan Academy Ser B Physiological and Biological Sciences, Vol. 87, No. 6, 2011, pp. 287-327.
|
[2]
|
H. Sorimachi and K. J. Suzuki, “The Structure of Calpain,” Biochemistry, Vol. 129, No. 5, 2001, pp. 653-664. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002903
|
[3]
|
D. E. Goll, V. F. Thompson, H. Li, W. Wei and J. Cong, “The Calpain System,” Physiological Reviews, Vol. 83, No. 3, 2003, pp. 731-801.
|
[4]
|
K. Suzuki, S. Hata, Y. Kawabata and H. Sorimachi, “Structure, Activation, and Biology of Calpain,” Diabetes, Vol. 53, Suppl. 1, 2004, pp. S12-S18. http://dx.doi.org/10.2337/diabetes.53.2007.S12
|
[5]
|
R. L. Campbell and P. L. Davies, “Structure-Function Relationships in Calpains,” Biochemical Journal, Vol. 447, No. 3, 2012, pp. 335-351. http://dx.doi.org/10.1042/BJ20120921
|
[6]
|
K. Suzuki and H. Sorimachi. “A Novel Aspect of Calpain Activation,” FEBS Letters, Vol. 433, No. 1-2, 1998, pp. 1-4. http://dx.doi.org/10.1016/S0014-5793(98)00856-4
|
[7]
|
M. Noguchi, A. Sarin, M. J. Aman, H. Nakajima, E. W. Shores, P. A. Henkart and W. J. Leonard, “Functional Cleavage of the Common Cytokine Receptor Gamma Chain (Gammac) by Calpain,” Proceedings of National Academy of Sciences USA, Vol. 94, No. 21, 1997, pp. 11534-11539. http://dx.doi.org/10.1073/pnas.94.21.11534
|
[8]
|
L. Leloup, H. Shao, Y. H. Bae, B. Deasy, D. Stolz, P. Roy and A. Wells, “m-Calpain Activation Is Regulated by Its Membrane Localization and by Its Binding to Phosphatidylinositol 4,5-Bisphosphate,” The Journal of Biological Chemistry, Vol. 285, No. 43, 2010, pp. 33549- 334566. http://dx.doi.org/10.1074/jbc.M110.123604
|
[9]
|
N. N. Danial and S. J. Korsmeyer, “Cell Death: Critical Control Points,” Cell, Vol. 116, No. 2, 2004, pp. 205-219. http://dx.doi.org/10.1016/S0092-8674(04)00046-7
|
[10]
|
J. S. Arthur, J. S. Elce, C. Hegadorn, K. Williams and P. A. Greer, “Disruption of the Murine Calpain Small Subunit Gene, CAPN4: Calpain Is Essential for Embryonic Development, but Not for Cell Growth and Division,” Molecular and Cellular Biology, Vol. 20, No. 12, 2000, pp. 4474-4481. http://dx.doi.org/10.1128/MCB.20.12.4474-4481.2000
|
[11]
|
U. J. Zimmerman, L. Boring, J. H. Pak, N. Mukerjee and K. K. Wang, “The Calpain Small Subunit Gene Is Essential: Its Inactivation Results in Embryonic Lethality,” International Union of Biochemistry and Molecular Biology Life, Vol. 50, No. 1, 2000, pp. 63-68.
|
[12]
|
P. Dutt, D. E. Croall, J. S. Arthur, T. D. Veyra, K. Williams, J. S. Elce and P. A. Greer, “m-Calpain Is Required for Preimplantation Embryonic Development in Mice,” BMC Developmental Biology, Vol. 24, No. 6, 2006, p. 3. http://dx.doi.org/10.1186/1471-213X-6-3
|
[13]
|
S. E. Lepage and A. E. Bruce, “Characterization and Comparative Expression of Zebrafish Calpain System Genes during Early Development,” Developmental Dynamics, Vol. 237, No. 3, 2008, pp. 819-829. http://dx.doi.org/10.1002/dvdy.21459
|
[14]
|
E. N. Moudilou, N. Mouterfi, J. M. Exbrayat and C. Brun, “Calpains Expression during Xenopus laevis Develop- ment,” Tissue and Cell, Vol. 42, No. 5, 2010, pp. 275-281. http://dx.doi.org/10.1016/j.tice.2010.07.001
|
[15]
|
H. Sorimachi, S. Ishiura and K. Suzuki, “A Novel Tissue-Specific Calpain Species Expressed Predominantly in the Stomach Comprises Two Alternative Splicing Products with and without Ca(2+)-Binding Domain,” Journal of Biological Chemistry, Vol. 268, No. 26, 1993, pp. 19476-19482.
|
[16]
|
S. Hata, S. Koyama, H. Kawahara, N. Doi, T. Maeda, N. Toyama-Sorimachi, K. Abe, K. Suzuki and H. Sorimachi, “Stomach-Specific Calpain, nCL-2, Localizes in Mucus Cells and Proteolyzes the Beta-Subunit of Coatomer Complex, Beta-COP,” Journal of Biological Chemistry, Vol. 281, No. 16, 2006, pp. 11214-11224. http://dx.doi.org/10.1074/jbc.M509244200
|
[17]
|
Y. Cao, H. Zhao and H. Grunz, “XCL-2 Is a Novel m-Type Calpain and Disrupts Morphogenetic Movements during Embryogenesis in Xenopus laevis,” Development, Growth and Differentiation, Vol. 43, No. 5, 2001, pp. 563-571. http://dx.doi.org/10.1046/j.1440-169X.2001.00592.x
|
[18]
|
J. M., Exbrayat, E. A. Moudilou, L. Abrouk and C. Brun, “Apoptosis in Amphibian Development,” Advances in Bioscience and Biotechnology, Vol. 3, No. 6A, 2012, pp. 669-678. http://dx.doi.org/10.4236/abb.2012.326087
|
[19]
|
P. D. Nieuwkoop and J. Faber, “Normal Table of Xenopus laevis,” North Holland Publishing Company, Amsterdam, 1967.
|
[20]
|
R. Sindelka, Z. Ferjentsik and J. Jonák, “Developmental Expression Profiles of Xenopus laevis Reference Genes,” Developmental Dynamics, Vol. 235, No. 3, 2006, pp. 754-758. http://dx.doi.org/10.1002/dvdy.20665
|
[21]
|
C. Hensey and J. Gautier, “A Developmental Timer that Regulates Apoptosis at the Onset of Gastrulation,” Mechanisms of Development, Vol. 69, No. 1-2, 1997, pp. 183-195. http://dx.doi.org/10.1016/S0925-4773(97)00191-3
|
[22]
|
C. Hensey and J. Gautier, “Programmed Cell Death during Xenopus Development: A Spatio-Temporal Analysis,” Developmental Biology, Vol. 203, No. 1, 1998, pp. 36-48. http://dx.doi.org/10.1006/dbio.1998.9028
|
[23]
|
J. Estabel, A. Mercer, N. Konig and J. M. Exbrayat, “Programmed Cell Death in Xenopus laevis Spinal Cord, Tail and Other Tissues, Prior to, and during, Metamorphosis,” Life Sciences, Vol. 73, No. 25, 2003, pp. 3297-3306. http://dx.doi.org/10.1016/j.lfs.2003.06.015
|
[24]
|
J. Newport and M. Kirschner, “A Major Developmental Transition in Early Xenopus Embryos: I. Characterization and Timing of Cellular Changes at the Midblastula Stage,” Cell, Vol. 30, No. 3, 1982, pp. 675-686. http://dx.doi.org/10.1016/0092-8674(82)90272-0
|