Generation of Exactly Solvable Potentials of Position-Dependent Mass Schrödinger Equation from Hulthen Potential

Abstract

Exactly Solvable Potentials (ESPs) of Position-Dependent Mass (PDM) Schrodinger equation are generated from Hulthen Potential (parent system) by using Extended Transformation (ET) method. The method includes a Co-ordinate Transformation (CT) followed by Functional Transformation (FT) of wave function. Mass function of parent system gets transformed to that of generated system. Two new ESPs are generated. The explicit expressions of mass functions, energy eigenvalues and corresponding wave functions for newly generated potentials (systems) are derived. System specific regrouping method is also discussed.

Share and Cite:

H. Rajbongshi and N. Singh, "Generation of Exactly Solvable Potentials of Position-Dependent Mass Schrödinger Equation from Hulthen Potential," Journal of Modern Physics, Vol. 4 No. 11, 2013, pp. 1540-1545. doi: 10.4236/jmp.2013.411189.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Bastard, “Wave Mechanics Applied to Semiconductor Heterostructure,” Editions de Physique, Les Ulis, France, 1988.
[2] P. Harrison, “Quantum Wells, Wires and Dots,” Wiley, New York, 2000.
[3] L. Serra and E. Lipparini, EuroPhysics Letter, Vol. 40, 1997, pp. 667-672.
http://dx.doi.org/10.1209/epl/i1997-00520-y
[4] F. Arias de Saavedra, J. Boronat, A. Polls and A. Fabrocini, Physical Review B, Vol. 50, 1994, pp. 4248-4251.
http://dx.doi.org/10.1103/PhysRevB.50.4248
[5] P. Ring and P. Schuck, “The Nuclear Many Body Problem,” Springer, New York, 1980.
http://dx.doi.org/10.1007/978-3-642-61852-9
[6] A. D. Alhaidari, Physical Review A, Vol. 66, 2002, Article ID: 042116.
http://dx.doi.org/10.1103/PhysRevA.66.042116
[7] C. Tazcan and R. Sever, Journal of Mathematical Chemistry, Vol. 42, 2007, pp. 387-395.
[8] M. Jafarpour and B. Ashtari, Advanced Studies in Theoretical Physics, Vol. 5, 2011, pp. 131-142.
[9] B. Gonül, O. Ozer, B. Gonül and F. üzgün, Modern Physics Letters A, Vol. 17, 2002, p. 2453.
[10] A.-P. Zang, P. Shi, Y.-W. Ling and Z.-W. Hua, Acta Physica Polonica A, Vol. 120, 2011, pp. 987-991.
[11] C. Tezcan, R. Sever and O. Yesiltas, International Journal of Theoretical Physics, Vol. 47, 2008, p. 1713.
[12] R. Sever, C. Tezcan, O. Yesiltas and M. Bucurgat, International Journal of Theoretical Physics, Vol. 47, 2008, pp. 2243-2248.
[13] S. Meyur, Bulgarian Journal of Physics, Vol. 38, 2011, pp. 357-363.
[14] R. Koc and H. Tütüncüler, Annalen der Physik, Vol. 12, 2003, pp. 684-691.
[15] C. Quesne, B. Bagchi, A. Banergee and V. M. Tkachuk, Bulgarian Journal of Physics, Vol. 33, 2006, pp. 308-318.
[16] C. Quesne, Sigma, Vol. 3, 2007, 14 p.
http://dx.doi.org/10.3842/SIGMA.2007.067
[17] A. Schulze-Halberg, International Journal of Modern Physics A, Vol. 22, 2007, pp. 1735-1769.
[18] A. Schulze-Halberg, International Journal of Modern Physics A, Vol. 23, 2008, pp. 537-546.
http://dx.doi.org/10.1142/S0217751X0803807X
[19] S. A. S. Ahmed, International Journal of Theoretical Physics, Vol. 36, 1997, pp. 1893-1905.
http://dx.doi.org/10.1007/BF02435851
[20] B. Gonül and M. Kocak, Chinese Physics Letters, Vol. 22, 2005, p. 2742.
[21] O. Von Roos, Physical Review B, Vol. 27, 1983, pp. 7547-7552. http://dx.doi.org/10.1103/PhysRevB.27.7547

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.