Effects of UV-, Visible-, Near-Infrared Beams in Three Therapy Resistance Case Studies of Fungal Skin infections
Rozhin Penjweini, Soheila Mokmeli, Klaus Becker, Hans-Ulrich Dodt, Saiedeh Saghafi
1Department of Bioelectronics, Institute of Solid State Electronics, Vienna University of Technology, Vienna, Austria 2Biophotonics Laboratory, Plasma-Physics Research Centre, Research Science Campus (IAU), Tehran, Iran.
1Department of Bioelectronics, Institute of Solid State Electronics, Vienna University of Technology, Vienna, Austria 2Biophotonics Laboratory, Plasma-Physics Research Centre, Research Science Campus (IAU), Tehran, Iran 3Center for Brain Research, Medical University of Vienna, Section Bioelectronics, Vienna, Austria.
1Department of Bioelectronics, Institute of Solid State Electronics, Vienna University of Technology, Vienna, Austria 2Center for Brain Research, Medical University of Vienna, Section Bioelectronics, Vienna, Austria.
Iranian Medical Laser Associations, Tehran, Iran.
DOI: 10.4236/opj.2013.37A001   PDF    HTML     5,606 Downloads   8,022 Views   Citations


Fungal and bacterial diseases, directly infecting various parts of body, have received much attention in recent years. Bacterial infections, such as Tinea Pedis, Pityriasis versicolor and Mycetoma can secondarily occur in superficial fungal damaged skin. They often occur in immune compromised individuals including diabetics and patients with peripheral arterial diseases. Mycetoma infections can travel through the bloodstream affecting different organs. In this paper, we investigate the photo-inactivation of the pathogens causing Tinea Pedis, Pityriasis versicolor, and Mycetoma infections in three therapy resistant patients without photosensitizing drugs. We have used a combination of visible to near-infrared (VIS/NIR) laser beams in association with blue (B), red (R) and ultra-violet (UV) light emitted diodes (LEDs) with incident doses of 0.63 - 21.43 J/cm2. These beams have minimum side effects on the normal part of the skin. According to the physicians’ assessments, all case study patients achieved an observable progress such as decreases in inflammatory lesions, rapid process of wound healing and scars improvements. Side effects such as inflammation, crusting, or hypopigmentation were not observed. The presented irradiation protocol may be a valuable complementary treatment for patients suffering from fungal and bacterial skin infections.

Share and Cite:

R. Penjweini, S. Mokmeli, K. Becker, H. Dodt and S. Saghafi, "Effects of UV-, Visible-, Near-Infrared Beams in Three Therapy Resistance Case Studies of Fungal Skin infections," Optics and Photonics Journal, Vol. 3 No. 7A, 2013, pp. 1-10. doi: 10.4236/opj.2013.37A001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Archer-Dubon, M. E. Icaza-Chivez, R. Orozco-Topete, E. Reyes, R. Baez-Martinez and S. Ponce de León, “An Epidemic Outbreak of Malassezia Folliculitis in Three Adult Patients in an Intensive Care Unit: A Previously Unrecognized Nosocomial Infection,” International Journal of Dermatology, Vol. 38, No. 6, 1999, pp. 453-456. http://dx.doi.org/10.1046/j.1365-4362.1999.00718.x
[2] J. W. Lee, B. J. Kim and M. N. Kim, “Photodynamic Therapy: New Treatment for Recalcitrant Malassezia Folliculitis,” Lasers in Surgery and Medicine, Vol. 42, No. 2, 2010, pp. 192-196. http://dx.doi.org/10.1002/lsm.20857
[3] M. D. Richardson and D. W. Warnock, “Fungal Infection: Diagnosis and Management,” 3rd Edition, Blackwell Publishing Ltd., Oxford, 2003.
[4] A. Zarei Mahmoudabadi and M. Zarrin, “Mycetomas in Iran: A Review Article,” Mycopathologia, Vol. 165, No. 5, 2008, pp. 135-141.
[5] A. O. A. Ahmed, A. M. El Sir, A. H. Fahal, E. E. Zijlstra, A. van Belkum and H. A. Verbrugh, “Unexpected High Prevalence of Secondary Bacterial Infection in Patients with Mycetoma,” Journal of Clinical Microbiology, Vol. 36, No. 3, 1998, pp. 850-851.
[6] M. O. A. Samaila, H. N. Mbibu and O. P. Oluwole, “Human Mycetoma,” Surgical Infections, Vol. 8, No. 5, 2007, pp 519-522. http://dx.doi.org/10.1089/sur.2006.052
[7] A. M. Kligman and J. J. Leyden, “The Interaction of Fungi and Bacteria in the Pathogenesis of Athlete’s Food in Skin Microbiology,” In: H. I. Maibach and R. Aly, Eds., Skin Microbiology, Springer-Verlag, New York, 1981, pp. 203-219.
[8] G. D. L. Smyth, “Fungal Infection in Otology,” British Journal of Dermatology, Vol. 76, No. 10, 2006, pp 425-428. http://dx.doi.org/10.1111/j.1365-2133.1964.tb14466.x
[9] H. A. Gallis, R. H. Drew and W. W. Pickard, “Amphotericin B: 30 Years of Clinical Experience,” Reviews of Infectious Diseases, Vol. 12, No. 3, 1990, pp. 308-329.
[10] J. K. Aronson, “Meyler’s Side Effects of Antimicrobial Drugs,” Elsevier, Amsterdam, 2010.
[11] E. G. de Oliveira Mima, A. C. Pavarina, L. N. Dovigo, C. E. Vergani, C. A. de Souza Costa, C. Kurachi, V. S. Bagnato and S. Paulo, “Susceptibility of Candida Albicans to Photodynamic Therapy in a Murine Model of Oral Candidosis,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, Vol. 109, No. 3, 2010, pp. 392-401.
[12] A. H. M. M. Arits, K. Mosterd, P. Nelemans, M. J. Rooij, G. A. Krekels, P. J. Quaedvlieg, P. A. F. van Neer, A. J. van Geest, J. J. Rijzewijk, M. R. Hendriks, B. A. Essers, P. M. Steijlen, A. Sommer and N. J. W. Kelleners-Smeets, “FC20 Three Non-Invasive Treatment Options for Superficial Basal Cell Carcinoma: Photodynamic Therapy versus Imiquimod Versus 5-Fluorouracil. TTOP-sBCC Trial,” Melanoma Research Vol. 20, 2010, p. e38.
[13] H. Ahmadieh, R. Taei, M. Soheilian, M. Riazi-Esfahani, R. Karkhaneh, A. Lashay, M. Azarmina, M. H. Dehghan and S. Moradian, “Single-Session Photodynamic Therapy Combined with Intravitreal Bevacizumab and Triamcinolone for Neovascular Age-Related Macular Degeneration,” BMC Ophthalmology, Vol. 7, No. 10, 2007, pp. 1-6. http://dx.doi.org/10.1186/1471-2415-7-10
[14] N. R. Rigual, K. Thankappan, M. Cooper, M. A. Sullivan, T. Dougherty, S. R. Popat, T. R. Loree, M. A. Biel and B. Henderson, “Photodynamic Therapy for Head and Neck Dysplasia and Cancer,” Archives of Otolaryngology— Head and Neck Surgery, Vol. 135, No. 8, 2009, pp. 784-788. http://dx.doi.org/10.1001/archoto.2009.98
[15] C. H. Sibata, V. C. Colussi, N. L. Oleinick and T. J. Kinsella, “Photodynamic Therapy: A New Concept in Medical Treatment,” Brazilian Journal of Medical and Biological Research, Vol. 33, No. 8, 2000, pp. 869-880.
[16] A. Amat, J. Rigau, R. W. Waynant, I. K. Ilev and J. J. Anders, “The Electric Field Induced by Light Can Explain Cellular Responses to Electromagnetic Energy: A Hypothesis of Mechanism,” Journal of Photochemistry and Photobiology B: Biology, Vol. 82, No. 2, 2006, pp. 152-160. http://dx.doi.org/10.1016/j.jphotobiol.2005.10.001
[17] H. A. Sadafi, Z. H. Mehboodi and D. Sardari, “A Review of the Mechanisms of Interaction Between the Extremely Low Frequency Electromagnetic Fields and Human Biology,” PIERS, Cambridge, USA, 2006, pp. 99-103.
[18] A. N. Rubinov, “Physical Grounds for Biological Effect of Laser Radiation,” Journal of Physics D: Applied Physics, Vol. 36, No. 19, 2003, pp. 2317-2330.
[19] A. N. Rubinov, “Physical Mechanisms of Biological Effect of Coherent and Noncoherent Light,” Stepanov Institute of Physics National Academy of Sciences of Belarus, Minsk, 2005.
[20] T. Karu, L. Pyatibrat and G. Kalendo, “Molecular Mechanism of the Therapeutic Effect of Low-Intensity Laser Radiation,” Journal of Photochemistry and Photobiology B: Biology, Vol. 27, No. 3, 1995, pp. 219-223.
[21] R. P. Feynman, R. B. Leighton and M. Sands, “The Feynman Lectures on Physics,” Addison-Wesley, Redwood City, 1963.
[22] H.-R. Park, O.-H. Park, H.-Y. Lee, J.-J. Seo and K.-M. Bark, “Photochemical Reaction of Nalidixic Acid in Methanol,” Bulletin of the Korean Chemical Society, Vol. 24, No. 11, 2003, pp. 1618-1622.
[23] S. Hashimoto and H. Akimoto, “UV Absorption Spectra and Photochemical Reactions of Simple Aromatic Hydrocarbons in the Cryogenic Oxygen Matrix,” The Journal of Physical Chemistry, Vol. 93, No. 2, 1989, pp. 571-577. http://dx.doi.org/10.1021/j100339a017
[24] T. Karu, L. Pyatibrat and G. Kalendo, “Irradiation with He-Ne Laser Increases ATP Level in Cells Cultivated in Vitro,” Journal of Photochemistry and Photobiology B: Biology, Vol. 27, No. 3, 1995, pp. 219-223.
[25] T. Karu, “Photobiology of Low-Power Laser Effects,” Health Physics, Vol. 56, No. 5, 1989, pp. 691-704.
[26] M. Choi, S. Y. Na, S. Cho and J. H. Lee, “Low Level Light Could Work on Skin Inflammatory Disease: A Case Report on Refractory Acrodermatitis Continua,” Journal of Korean Medical Science, Vol. 26, No. 3, 2011, pp. 454-456. http://dx.doi.org/10.3346/jkms.2011.26.3.454
[27] V. Manteifel, L. Bakeeva and T. Karu, “Ultrastructural Changes in Chondriome of Human Lymphocytes after Irradiation with He-Ne Laser: Appearance of Giant Mitochondria,” Journal of Photochemistry and Photobiology B: Biology, Vol. 38, No. 1, 1997, pp. 25-30.
[28] M. D. Catterall, M. E. Ward and P. Jacobs, “A Reappraisal of the Role of Pityrosporum Orbiculare in Pityriasis Versicolor and the Significance of Extracellular Lipase,” Journal of Investigative Dermatology, Vol. 71, No. 6, 1978, pp. 398-401.
[29] H. Abbasher, A. E. M. Ahmed, A. H. Fhal, M. Abdulla, A. Sidig, K. Awad and E. M. Ahmad, “Cervical Cord Compression Secondary to Mycetoma Infection,” Sudanese Journal of Public Health, Vol. 2, No. 2, 2007, pp. 112-115.
[30] S. Saghafi, R. Penjweini, K. Becker, K. W. Kratky and H.-U. Dodt, “Investigating the Effects of Laser Beams (532 and 660 nm) in Annihilation of Pistachio Mould Fungus Using Spectrophotometry Analysis,” Journal of the European Optical Society—Rapid publications, Vol. 5, 2010, Article ID: 10033s.
[31] M. Leo and L. Nollet, “Handbook of Food Analysis,” In: L. M. L. Nollet, Ed., Physical Characterization and Nutrient Analysis, CRC Press, 2004, 912 p.
[32] G. Zonios, J. Bykowski and N. Kollias, “Skin Melanin, Hemoglobin, and Light Scattering Properties Can be Quantitatively Assessed in Vivo Using Diffuse Reflectance Spectroscopy,” Journal of Investigative Dermatology, Vol. 117, No. 6, 2001, pp. 1452-1457.
[33] J. M. Wells, R. J. Cole and J. W. Kirksey, “Emodin, a Toxic Metabolite of Aspergillus Wentii Isolated from Weevil-Damaged Chestnuts,” Applied Microbiology, Vol. 30, No. 1, 1975, pp. 26-28.
[34] G. Kobayashi, T. Nakamura, H. Ohmachi, A. Matsuoka, T. Ochiai and K. Shikama, “Yeast Flavohemoglobin from Candida Norvegensis; Its Structural, Spectral, and Stability Properties,” The Journal of Biological Chemistry, Vol. 277, No. 3, 2002, pp. 42540-42548.
[35] A. Kawada, Y. Aragane, H. Kameyama, Y. Sangen and T. Tezuka, “Acne Phototherapy with a High-Intensity, Enhanced, Narrow-Band, Blue Light Source: An Open Study and in Vitro Investigation,” Journal of Dermatological Science, Vol. 30, No. 2, 2002, pp. 129-135.
[36] W. P. Baugh and W. D. Kucaba, “Nonablative Phototherapy for Acne Vulgaris Using the KTP 532 nm Laser,” Dermatologic Surgery, Vol. 31, No. 10, 2005, pp. 1290-1296. http://dx.doi.org/10.1111/j.1524-4725.2005.31205
[37] S. H. Tseng, P. Bargo, A. Durkin and N. Kollias, “Chromophore Concentrations, Absorption and Scattering Properties of Human Skin in-Vivo,” Optics Express, Vol. 17, No. 17, 2009, pp. 14599-14617.
[38] T. I. Karu, “Photobiology of Low-Power Laser Therapy,” Taylor & Francis, Boca Raton, 1989.
[39] B. Braunecker, R. Hentschel and H. J. Tiziani, “Advanced Optics Using Aspherical Elements,” SPIE Press, Bellingham, 2008.
[40] S. A. Viznyuk and A. T. Sukhodol’skii, “Rectification of the Intensity Distribution of Gaussian Beams Using Aspheric Lenses,” Soviet Journal of Quantum Electronics, Vol. 20, No. 2, 1990, pp. 167-170.
[41] T. Kubasova, M. Horvath, K. Kocsis and M. Fenyo, “Effect of Visible Light on Some Cellular and Immune Parameters,” Immunology and Cell Biology, Vol. 73, No. 3, 1995, pp. 239-244.
[42] Z. Al Timimi, M. S. Jaafar and M. Z. Mat Jafri, “Photodynamic Therapy and Green Laser Blood Therapy,” Global Journal of Medical Research, Vol. 11, No. 5, 2011, pp. 23-28.
[43] K. Veena, M. Ramaiah, G. K. Vanita, T. S. Avinash and V. P. Vaidya, “Synthesis of Symmetrical and Asymmetrical Azines Encompassing Naphtho[2,1-b]furan by a Novel Approach,” E-Journal of Chemistry, Vol. 8, No. 1, 2011, pp. 354-360.
[44] E. Shnitkind, E. Yaping, S. Geen, A. R. Shalita and W. L. Lee, “Anti-Inflammatory Properties of Narrow-Band Blue Light,” Journal of Drugs in Dermatology, Vol. 5, No. 7, 2006, pp. 605-610.
[45] P. Papageorgiou, A. Katsambas and A. Chu, “Phototherapy with Blue (415 nm) and Red (660 nm) Light in the Treatment of Acne Vulgaris,” British Journal of Dermatology, Vol. 142, No. 5, 2000, pp. 973-978.
[46] N. Fournier, K. Fritz and S. Mordon, “Use of Nonthermal Blue (405- to 420-nm) and Near-Infrared Light (850- to 900-nm) Dual-Wavelength System in Combination with Glycolic Acid Peels and Topical Vitamin C for Skin Photorejuvenation,” Dermatologic Surgery, Vol. 32, No. 9, 2006, pp. 1140-1146.
[47] Y. Maegawa, T. Itoh, T. Hosokawa, K. Yaegashi and M. Nishi, “Effects of Near-Infrared Low-Level Laser Irradiation on Microcirculation,” Lasers in Surgery and Medicine, Vol. 27, No. 5, 2000, pp 427-437.
[48] J. K. Barton, D. P. Popok and J. F. Black, “Thermal Analysis of Blood Undergoing Laser Photocoagulation,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 7, No. 6, 2001, pp. 936-943.
[49] H. T. Whelan, R. L. Smits, E. V. Buchman, N. T. Whelan, S. G. Turner, D. A. Margolis, V. Cevenini, H. Stinson, R. Ignatius, T. Martin, J. Cwiklinski, A. F. Philippi, W. R. Graf, B. Hodgson, L. Gould, M. Kane, G. Chen and J. Caviness, “Effect of NASA Light Emitting Diode Irradiation on Wound Healing,” Journal of Clinical Laser Medicine & Surgery, Vol. 19, No. 6, 2001, pp. 305-314.
[50] P. Loulergue, A. Hot, E. Dannaoui, A. Dallot, S. Poirée, B. Dupont and O. Lortholary, “Short Report: Successful Treatment of Black-Grain Mycetoma with Voriconazole,” The American Journal of Tropical Medicine and Hygiene, Vol. 75, No. 6, 2006, pp. 1106-1107.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.