The 19 kDa Protein from Mycobacterium avium subspecies paratuberculosis Is a Glycolipoprotein


This study characterizes the 19 kDa protein expressed by Mycobacterium avium subspecies paratuberculosis (MAP) as a glycolipoprotein, providing the foundation for future experiments regarding its antigenicity and role in disease pathogenicity. We have previously shown that a 4.8 kb insert from MAP will produce a 16 kDa recombinant protein when expressed in Escherichia coli and 19 kDa recombinant protein when expressed in M. smegmatis (smeg19K). The difference of 3 kDa in size of these expressed proteins may be related to post translational modifications that occur in Mycobacterium species. We hypothesized that smeg19K is a glycolipoprotein since BLAST analysis revealed approximately 76% amino acid identity between the MAP 19 kDa protein and a known lipoglycoprotein, the 19 kDa protein of M. tuberculosis. This prediction was confirmed by the following positive staining of smeg19K with Sudan Black 4B, a postelectrophoresis dye used to stain for lipids. Smeg19K has also stained positively for glycosylation with the lectin concavalin A, a highly specific stain for mannose residues. As expected, treatment with tunicamycin (an antibiotic known to inhibit N-glycosylation) and treatment with deglycosylation assay (non-specific for mannose), showed no reduction in size of 19 kDa glycolipoprotein.

Share and Cite:

S. Naser, S. Thanigachalam, N. Spinelli, M. Safavi, N. Naser and O. Khan, "The 19 kDa Protein from Mycobacterium avium subspecies paratuberculosis Is a Glycolipoprotein," Advances in Microbiology, Vol. 3 No. 7, 2013, pp. 520-528. doi: 10.4236/aim.2013.37070.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. M. G. Ranes, J. Rauzier, M. Lagraderie, M. Gheorghiu and B. Gicquel, “Functional Analysis of pAL5000, a Plasmid from Mycobacterium Fortuitum: Construction of a “Mini” Mycobacterium-Escherichia coli Shuttle Vector,” Journal of Bacteriology, Vol. 172, No. 5, 1990, pp. 2793-2797.
[2] J. O. Falkinham, “Epidemiology of Infection by Nontuberculosis Mycobacteria,” Clinical Microbiology Reviews, Vol. 9, No. 2, 1996, pp. 177-215.
[3] C. B. Inderleid, C. A. Kemper and L. E. M. Bermudez, “The Mycobacterium Avium Complex,” Clinical Microbiology Reviews, Vol. 6, No. 3, 1993, pp. 266-310.
[4] E. Mahenthiralingam, B. I. Marklund, L. A. Brooks, D. A. Smith, G. L. Bancroft and R. W. Stokes, “Site-Directed Mutagenesis of the 19-Kilodalton Lipoprotein Antigen Reveals No Essential Role for the Protein in the Growth and Virulence of Mycobacterium Intracellulare,” Infection and Immunity, Vol. 66, No. 8, 1998, pp. 3626-3634.
[5] J. P. Bannantine, R. G. Barletta, J. R. Stabel, M. L. Paustian and V. Kapur, “Application of the Genome Sequence to Address Concerns That Mycobacterium Avium Subspecies Paratuberculosis Might Be a Foodborne Pathogen,” Foodborne Pathogens and Disease, Vol. 1, No. 1, 2004, pp. 3-15.
[6] A. Chiba, et al., “Structures of Sialylated O-Linked Oligosaccharides of Bovine Peripheral Nerve α-Dystroglycan. The Role of Novel O-Mannosyl-Type Oligosaccharide in the Birding of α-Dystroglycan with Laminin,” The Journal of Biological Chemistry, Vol. 272, No. 4, 1997, pp. 2156-2162.
[7] T. Garbe, D. Harris, M. Vordermeier, R. Lathigra, J. Ivanyi and D. Young, “Expression of the Mycobacterium Tuberculosis 19-Kilodalton Antigen in Mycobacterium Smegmatis: Immunological Analysis and Evidence of Glycosylation,” Infection and Immunity, Vol. 61, No. 1, 1993, pp. 260-267.
[8] J. L. Herrmann, P. O’Gaora, A. Gallagher, J. E. R. Thole and D. Young, “Bacterial Glycoproteins: A Link between Glycosylation and Proteolytic Cleavage of a 19 kDa Antigen from Mycobacterium Tuberculosis,” EMBO Journal, Vol. 15, No. 14, 1996, pp. 3547-3554.
[9] D. L. Nelson and M. M. Cox, “Lehninger Principles of Biochemistry,” 4th Edition, United States of America, Freeman, 2005, p. 256.
[10] J. Huntley, J. R. Stabel and J. P. Bannantine, “Immunoreactivity of the Mycobacterium Avium subsp. Paratuberculosis 19-kDa Lipoprotein,” BMC Microbiology, Vol. 5, No. 1, 2005, p. 3.
[11] H. D. Brightbill, D. H. Libraty, S. R. Krutzik, R. B. Yang, J. T. Belisle, J. R. Bleharski, M. Maitland, M. V. Norgard, S. E. Plevy, S. T. Smale, P. J. Brennan, B. R. Bloom, P. J. Godowski and R. L. Modlin, “Host Defense Mechanisms Triggered by Microbial Lipoproteins through Toll-Like Receptors,” Science, Vol. 285, No. 5428, 1999, pp. 732-736.
[12] D. P. Harris, H. M. Vordermeier, S. J. Brett, G. Pasvol, C. Moreno and J. Ivanyi, “Epitope Specificity and Isoforms of the Mycobacterial 19-Kilodalton Antigen,” Infection and Immunity, Vol. 62, No. 7, 1994, pp. 2963-2972.
[13] D. L. Nelson and M. M. Cox, “Lehninger Principles of Biochemistry,” 4th Edition, United States of America, Freeman, 2005, p. 262.
[14] T. M. Bricker, M. J. Boyer, J. Keith, R. Watson-McKown and K. S. Wise, “Association of Lipids with Integral Membrane Surface Proteins of Mycoplasma Hyorhinis,” Infection and Immunity, Vol. 56, No. 2, 1988, pp. 295-301.
[15] WebMD, “Definition of lipoprotein,” 2008.
[16] N. R. Chamberlain, M. E. Brandt, A. L. Erwin, J. D. Radolf and M. V. Norgard, “Major Integral Membrane Protein Immunogens of Treponema Pall’Dum Are Proteolipids,” Infection and Immunity, Vol. 57, No. 9, 1989, pp. 2872-2877.
[17] H. C. Wu and M. Tokunaga, “Biogenesis of Lipoproteins in Bacteria,” Current Topics in Microbiology and Immunology, Vol. 125, No. 1, 1986, pp. 127-157.
[18] C. Espitia and R. Mancilla, “Identification, Isolation, and Partial Characterization of Mycobacterium Tuberculosis 50to 55-Kilodalton and Mycobacterium Bovis BCG 45to 47-Kilodalton Antigens,” Infection and Immunity, Vol. 63, No. 3, 1989, pp. 580-584.
[19] T. Fifis, C. Costopoulos, A. J. Radford, A. Bacic and P. R. Wood, “Purification and Characterization of Major Antigens from a Mycobacterium Bovis Culture Filtrate,” Infection and Immunity, Vol. 59, No. 3, 1991, pp. 800-807.
[20] F. A. K. El-Zaatari, S. A. Naser, L. Engstrand, C. Y. Hachem and D. Y. Graham, “Identification and Characterization of Mycobacterium Paratuberculosis Recombinant Proteins Expressed in E. coli,” Current Microbiology, Vol. 29, No. 3, 1994, pp. 177-184.
[21] U. K. Laemmli, “Cleavage of Structural Proteins during the Assembly of the Head Bacteriophage T4,” Nature (London), Vol. 45, No. 5259, 1970, pp. 680-685.
[22] J. H. Morrisey, “Silver Stain for Proteins in Polyacrylamide Gels: A Modified Procedure with Enhanced Uniform Sensitivity,” Analytical Biochemistry, Vol. 117, No. 2, 1981, pp. 307-310.
[23] A. T. Andrews, “Electrophoresis: Theory, Techniques, Biochemical and Clinical Applications,” 2nd Edition, Oxford Science Publications, New York, 1981, p. 37
[24] S. M. Kamper and A. F. Barbet, “Surface Epitope Variation via Mosaic Gene Formation Is Potential Key to Long Term Survival of Trypanosoma Brucei,” Molecular and Biochemical Parasitology, Vol. 53, No. 1-2, 1992, pp. 33-44.
[25] S. Moens and J. Vanderleyen, “Glycoproteins in Prokaryotes,” Archieves of Microbiology, Vol. 168, No. 3, 1997, pp. 69-175.
[26] A. A. Gooley, B. J. Classon, R. Marschalek and K. L Williams, “Glycosylation Sites Identified by Detection of Glycosylated Amino Acids Released from Edman Degradation: The Identification of Xaa-Proo-Xaa-Xaa as a Motif for Thr-O Glycosylation. Biochem. Biophys,” Research Communications, Vol. 178, No. 3, 1991, pp. 1994-1201.
[27] B. C. O’Connel, L. A. Tabak and N. Ramasubbu, “The Influence of Flanking Sequences on O-Glycosylation. Biochem. Biophys,” Research Communications, Vol. 180, No. 2, 1991, pp. 1024-1030.
[28] B. C. O’Connel, F. K. Hagan and L. A. Tabak, “The Influence of Flanking Sequence on the O-Glycosylation of Threonine in Vitro,” Journal of Biological Chemistry, Vol. 267, No. 35, 1992, pp. 25010-25018.
[29] I. B. H. Wilson, Y. Gavel and G. von Heijne, “Amino Acids Distribution around O-Linked Glycosylation Sites,” Biochemistry Journal, Vol. 275, No. 2, 1991, pp. 529-534.
[30] N. Jun-ichi, M. Akiyoshi, S. Hirata and T. Fukuda, “Saccharomyces Cerevisiae IRE2/HAC1 Is Involved in IRE1Mediated KAR2 Expression,” Oxford University Press, Oxford, Vol. 24, No. 21, 1996, pp. 4222-4226.
[31] P. S. Jackett, G. Bothamley, H. V. Batra, A. Mistry, D. B. Young and J. Inayi, “Specificity of Antibodies to Immunodominant Mycobacterial Antigens in Pulmonary Tuberculosis,” Journal of Clinical Microbiology, Vol. 26, No. 11, 1998, pp. 2313-2318.
[32] K. J. Erb, J. Kirman, L. Woodfield, T. Wilson, D. M. Collins, J. D. Watson and G. LeGros, “Identification of Potential CD8+ T-Cell Epitopes of the 19 kDa and AhpC Proteins from Mycobacterium Tuberculosis. No Evidence for CD8+ T-Cell Priming against the Identified Peptides after DNA-Vaccination of Mice,” Vaccine, Vol. 16, No. 7, 1998, pp. 692-697.
[33] D. P. Fonseca, D. Joosten, H. Snippe and A. F. Verheul, “Evaluation of T-Cell Responses to Peptides and Lipopeptides with MHC Class I Binding Motifs Derived from the Amino Acid Sequence of the 19-kDa Lipoprotein of Mycobacterium Tuberculosis,” Molecular Immunology, Vol. 37, No. 8, 2000, pp. 413-422.
[34] D. P. Harris, H. M. Vordermeier, G. Friscia, E. Roman, H. M. Surcel, G. Pasvol, C. Moreno and J. Ivanyi, “Genetically Permissive Recognition of Adjacent Epitopes from the 19-kDa Antigen of Mycobacterium Tuberculosis by Human and Murine T Cells,” Journal of Immunology, Vol. 150, No. 11, 1993, pp. 5041-5050.
[35] H. Hohn, C. Kortsik, K. Nilges, A. Necker, K. Freitag, G. Tully, C. Neukirch and M. J. Maeurer, “Human Leucocyte Antigen-A2 Restricted and Mycobacterium Tuberculosis 19-kDa Antigen-Specific CD8+ T-Cell Responses Are Oligoclonal and Exhibit a T-Cell Cytotoxic Type 2 Response Cytokine-Secretion Pattern,” Immunology, Vol. 104, No. 3, 2001, pp. 278-288.
[36] W. H. Boom, R. N. Husson, R. A. Young, J. R. David and W. F. Piessens, “In Vivo and in Vitro Characterization of Murine T-Cell Clones Reactive to Mycobacterium Tuberculosis,” Infection and Immunity, Vol. 55, No. 9, 1987, pp. 2223-2229.
[37] O. Neyrolles, K. Gould, M. P. Gares, S. Brett, R. Janssen, P. O’Gaora, J. L. Herrmann, M. C. Prevost, E, Perret, J. E. Thole and D. Young, “Lipoprotein Access to MHC Class I Presentation during Infection of Murine Macrophages with Live Mycobacteria,” Journal of Immunology, Vol. 166, No. 1, 2001, pp. 447-457.
[38] G. S. Getz, P. A. Vanderlaan and C. A. Reardon, “Natural Killer T Cells in Lipoprotein Metabolism and Atherosclerosis,” Thrombosis and Haemostasis, Vol. 106, No. 5, 2011, pp. 814-819.
[39] Y. Zheng, M. T. Stephan, S. A. Gai, W. Abraham, A. Shearer and D. J. Irvine, “In Vivo Targeting of Adoptively Transferred T-Cells with Antibodyand Cytokine-Conjugated Liposomes,” Journal of Controlled Release: Official Journal of the Controlled Release Society, 2013.
[40] J. S. Chauhan, A. H. Bhat, G. P. Raghava and A. Rao, “GlycoPP: A Webserver for Prediction of Nand O-Glycosites in Prokaryotic Protein Sequences,” PloS One, Vol. 7, No. 7, 2012, Article ID: e40155.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.