The 19 kDa Protein from Mycobacterium avium subspecies paratuberculosis Is a Glycolipoprotein

Abstract Full-Text HTML XML Download Download as PDF (Size:518KB) PP. 520-528
DOI: 10.4236/aim.2013.37070    3,019 Downloads   4,999 Views   Citations


This study characterizes the 19 kDa protein expressed by Mycobacterium avium subspecies paratuberculosis (MAP) as a glycolipoprotein, providing the foundation for future experiments regarding its antigenicity and role in disease pathogenicity. We have previously shown that a 4.8 kb insert from MAP will produce a 16 kDa recombinant protein when expressed in Escherichia coli and 19 kDa recombinant protein when expressed in M. smegmatis (smeg19K). The difference of 3 kDa in size of these expressed proteins may be related to post translational modifications that occur in Mycobacterium species. We hypothesized that smeg19K is a glycolipoprotein since BLAST analysis revealed approximately 76% amino acid identity between the MAP 19 kDa protein and a known lipoglycoprotein, the 19 kDa protein of M. tuberculosis. This prediction was confirmed by the following positive staining of smeg19K with Sudan Black 4B, a postelectrophoresis dye used to stain for lipids. Smeg19K has also stained positively for glycosylation with the lectin concavalin A, a highly specific stain for mannose residues. As expected, treatment with tunicamycin (an antibiotic known to inhibit N-glycosylation) and treatment with deglycosylation assay (non-specific for mannose), showed no reduction in size of 19 kDa glycolipoprotein.

Cite this paper

S. Naser, S. Thanigachalam, N. Spinelli, M. Safavi, N. Naser and O. Khan, "The 19 kDa Protein from Mycobacterium avium subspecies paratuberculosis Is a Glycolipoprotein," Advances in Microbiology, Vol. 3 No. 7, 2013, pp. 520-528. doi: 10.4236/aim.2013.37070.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. M. G. Ranes, J. Rauzier, M. Lagraderie, M. Gheorghiu and B. Gicquel, “Functional Analysis of pAL5000, a Plasmid from Mycobacterium Fortuitum: Construction of a “Mini” Mycobacterium-Escherichia coli Shuttle Vector,” Journal of Bacteriology, Vol. 172, No. 5, 1990, pp. 2793-2797.
[2] J. O. Falkinham, “Epidemiology of Infection by Nontuberculosis Mycobacteria,” Clinical Microbiology Reviews, Vol. 9, No. 2, 1996, pp. 177-215.
[3] C. B. Inderleid, C. A. Kemper and L. E. M. Bermudez, “The Mycobacterium Avium Complex,” Clinical Microbiology Reviews, Vol. 6, No. 3, 1993, pp. 266-310.
[4] E. Mahenthiralingam, B. I. Marklund, L. A. Brooks, D. A. Smith, G. L. Bancroft and R. W. Stokes, “Site-Directed Mutagenesis of the 19-Kilodalton Lipoprotein Antigen Reveals No Essential Role for the Protein in the Growth and Virulence of Mycobacterium Intracellulare,” Infection and Immunity, Vol. 66, No. 8, 1998, pp. 3626-3634.
[5] J. P. Bannantine, R. G. Barletta, J. R. Stabel, M. L. Paustian and V. Kapur, “Application of the Genome Sequence to Address Concerns That Mycobacterium Avium Subspecies Paratuberculosis Might Be a Foodborne Pathogen,” Foodborne Pathogens and Disease, Vol. 1, No. 1, 2004, pp. 3-15.
[6] A. Chiba, et al., “Structures of Sialylated O-Linked Oligosaccharides of Bovine Peripheral Nerve α-Dystroglycan. The Role of Novel O-Mannosyl-Type Oligosaccharide in the Birding of α-Dystroglycan with Laminin,” The Journal of Biological Chemistry, Vol. 272, No. 4, 1997, pp. 2156-2162.
[7] T. Garbe, D. Harris, M. Vordermeier, R. Lathigra, J. Ivanyi and D. Young, “Expression of the Mycobacterium Tuberculosis 19-Kilodalton Antigen in Mycobacterium Smegmatis: Immunological Analysis and Evidence of Glycosylation,” Infection and Immunity, Vol. 61, No. 1, 1993, pp. 260-267.
[8] J. L. Herrmann, P. O’Gaora, A. Gallagher, J. E. R. Thole and D. Young, “Bacterial Glycoproteins: A Link between Glycosylation and Proteolytic Cleavage of a 19 kDa Antigen from Mycobacterium Tuberculosis,” EMBO Journal, Vol. 15, No. 14, 1996, pp. 3547-3554.
[9] D. L. Nelson and M. M. Cox, “Lehninger Principles of Biochemistry,” 4th Edition, United States of America, Freeman, 2005, p. 256.
[10] J. Huntley, J. R. Stabel and J. P. Bannantine, “Immunoreactivity of the Mycobacterium Avium subsp. Paratuberculosis 19-kDa Lipoprotein,” BMC Microbiology, Vol. 5, No. 1, 2005, p. 3.
[11] H. D. Brightbill, D. H. Libraty, S. R. Krutzik, R. B. Yang, J. T. Belisle, J. R. Bleharski, M. Maitland, M. V. Norgard, S. E. Plevy, S. T. Smale, P. J. Brennan, B. R. Bloom, P. J. Godowski and R. L. Modlin, “Host Defense Mechanisms Triggered by Microbial Lipoproteins through Toll-Like Receptors,” Science, Vol. 285, No. 5428, 1999, pp. 732-736.
[12] D. P. Harris, H. M. Vordermeier, S. J. Brett, G. Pasvol, C. Moreno and J. Ivanyi, “Epitope Specificity and Isoforms of the Mycobacterial 19-Kilodalton Antigen,” Infection and Immunity, Vol. 62, No. 7, 1994, pp. 2963-2972.
[13] D. L. Nelson and M. M. Cox, “Lehninger Principles of Biochemistry,” 4th Edition, United States of America, Freeman, 2005, p. 262.
[14] T. M. Bricker, M. J. Boyer, J. Keith, R. Watson-McKown and K. S. Wise, “Association of Lipids with Integral Membrane Surface Proteins of Mycoplasma Hyorhinis,” Infection and Immunity, Vol. 56, No. 2, 1988, pp. 295-301.
[15] WebMD, “Definition of lipoprotein,” 2008.
[16] N. R. Chamberlain, M. E. Brandt, A. L. Erwin, J. D. Radolf and M. V. Norgard, “Major Integral Membrane Protein Immunogens of Treponema Pall’Dum Are Proteolipids,” Infection and Immunity, Vol. 57, No. 9, 1989, pp. 2872-2877.
[17] H. C. Wu and M. Tokunaga, “Biogenesis of Lipoproteins in Bacteria,” Current Topics in Microbiology and Immunology, Vol. 125, No. 1, 1986, pp. 127-157.
[18] C. Espitia and R. Mancilla, “Identification, Isolation, and Partial Characterization of Mycobacterium Tuberculosis 50to 55-Kilodalton and Mycobacterium Bovis BCG 45to 47-Kilodalton Antigens,” Infection and Immunity, Vol. 63, No. 3, 1989, pp. 580-584.
[19] T. Fifis, C. Costopoulos, A. J. Radford, A. Bacic and P. R. Wood, “Purification and Characterization of Major Antigens from a Mycobacterium Bovis Culture Filtrate,” Infection and Immunity, Vol. 59, No. 3, 1991, pp. 800-807.
[20] F. A. K. El-Zaatari, S. A. Naser, L. Engstrand, C. Y. Hachem and D. Y. Graham, “Identification and Characterization of Mycobacterium Paratuberculosis Recombinant Proteins Expressed in E. coli,” Current Microbiology, Vol. 29, No. 3, 1994, pp. 177-184.
[21] U. K. Laemmli, “Cleavage of Structural Proteins during the Assembly of the Head Bacteriophage T4,” Nature (London), Vol. 45, No. 5259, 1970, pp. 680-685.
[22] J. H. Morrisey, “Silver Stain for Proteins in Polyacrylamide Gels: A Modified Procedure with Enhanced Uniform Sensitivity,” Analytical Biochemistry, Vol. 117, No. 2, 1981, pp. 307-310.
[23] A. T. Andrews, “Electrophoresis: Theory, Techniques, Biochemical and Clinical Applications,” 2nd Edition, Oxford Science Publications, New York, 1981, p. 37
[24] S. M. Kamper and A. F. Barbet, “Surface Epitope Variation via Mosaic Gene Formation Is Potential Key to Long Term Survival of Trypanosoma Brucei,” Molecular and Biochemical Parasitology, Vol. 53, No. 1-2, 1992, pp. 33-44.
[25] S. Moens and J. Vanderleyen, “Glycoproteins in Prokaryotes,” Archieves of Microbiology, Vol. 168, No. 3, 1997, pp. 69-175.
[26] A. A. Gooley, B. J. Classon, R. Marschalek and K. L Williams, “Glycosylation Sites Identified by Detection of Glycosylated Amino Acids Released from Edman Degradation: The Identification of Xaa-Proo-Xaa-Xaa as a Motif for Thr-O Glycosylation. Biochem. Biophys,” Research Communications, Vol. 178, No. 3, 1991, pp. 1994-1201.
[27] B. C. O’Connel, L. A. Tabak and N. Ramasubbu, “The Influence of Flanking Sequences on O-Glycosylation. Biochem. Biophys,” Research Communications, Vol. 180, No. 2, 1991, pp. 1024-1030.
[28] B. C. O’Connel, F. K. Hagan and L. A. Tabak, “The Influence of Flanking Sequence on the O-Glycosylation of Threonine in Vitro,” Journal of Biological Chemistry, Vol. 267, No. 35, 1992, pp. 25010-25018.
[29] I. B. H. Wilson, Y. Gavel and G. von Heijne, “Amino Acids Distribution around O-Linked Glycosylation Sites,” Biochemistry Journal, Vol. 275, No. 2, 1991, pp. 529-534.
[30] N. Jun-ichi, M. Akiyoshi, S. Hirata and T. Fukuda, “Saccharomyces Cerevisiae IRE2/HAC1 Is Involved in IRE1Mediated KAR2 Expression,” Oxford University Press, Oxford, Vol. 24, No. 21, 1996, pp. 4222-4226.
[31] P. S. Jackett, G. Bothamley, H. V. Batra, A. Mistry, D. B. Young and J. Inayi, “Specificity of Antibodies to Immunodominant Mycobacterial Antigens in Pulmonary Tuberculosis,” Journal of Clinical Microbiology, Vol. 26, No. 11, 1998, pp. 2313-2318.
[32] K. J. Erb, J. Kirman, L. Woodfield, T. Wilson, D. M. Collins, J. D. Watson and G. LeGros, “Identification of Potential CD8+ T-Cell Epitopes of the 19 kDa and AhpC Proteins from Mycobacterium Tuberculosis. No Evidence for CD8+ T-Cell Priming against the Identified Peptides after DNA-Vaccination of Mice,” Vaccine, Vol. 16, No. 7, 1998, pp. 692-697.
[33] D. P. Fonseca, D. Joosten, H. Snippe and A. F. Verheul, “Evaluation of T-Cell Responses to Peptides and Lipopeptides with MHC Class I Binding Motifs Derived from the Amino Acid Sequence of the 19-kDa Lipoprotein of Mycobacterium Tuberculosis,” Molecular Immunology, Vol. 37, No. 8, 2000, pp. 413-422.
[34] D. P. Harris, H. M. Vordermeier, G. Friscia, E. Roman, H. M. Surcel, G. Pasvol, C. Moreno and J. Ivanyi, “Genetically Permissive Recognition of Adjacent Epitopes from the 19-kDa Antigen of Mycobacterium Tuberculosis by Human and Murine T Cells,” Journal of Immunology, Vol. 150, No. 11, 1993, pp. 5041-5050.
[35] H. Hohn, C. Kortsik, K. Nilges, A. Necker, K. Freitag, G. Tully, C. Neukirch and M. J. Maeurer, “Human Leucocyte Antigen-A2 Restricted and Mycobacterium Tuberculosis 19-kDa Antigen-Specific CD8+ T-Cell Responses Are Oligoclonal and Exhibit a T-Cell Cytotoxic Type 2 Response Cytokine-Secretion Pattern,” Immunology, Vol. 104, No. 3, 2001, pp. 278-288.
[36] W. H. Boom, R. N. Husson, R. A. Young, J. R. David and W. F. Piessens, “In Vivo and in Vitro Characterization of Murine T-Cell Clones Reactive to Mycobacterium Tuberculosis,” Infection and Immunity, Vol. 55, No. 9, 1987, pp. 2223-2229.
[37] O. Neyrolles, K. Gould, M. P. Gares, S. Brett, R. Janssen, P. O’Gaora, J. L. Herrmann, M. C. Prevost, E, Perret, J. E. Thole and D. Young, “Lipoprotein Access to MHC Class I Presentation during Infection of Murine Macrophages with Live Mycobacteria,” Journal of Immunology, Vol. 166, No. 1, 2001, pp. 447-457.
[38] G. S. Getz, P. A. Vanderlaan and C. A. Reardon, “Natural Killer T Cells in Lipoprotein Metabolism and Atherosclerosis,” Thrombosis and Haemostasis, Vol. 106, No. 5, 2011, pp. 814-819.
[39] Y. Zheng, M. T. Stephan, S. A. Gai, W. Abraham, A. Shearer and D. J. Irvine, “In Vivo Targeting of Adoptively Transferred T-Cells with Antibodyand Cytokine-Conjugated Liposomes,” Journal of Controlled Release: Official Journal of the Controlled Release Society, 2013.
[40] J. S. Chauhan, A. H. Bhat, G. P. Raghava and A. Rao, “GlycoPP: A Webserver for Prediction of Nand O-Glycosites in Prokaryotic Protein Sequences,” PloS One, Vol. 7, No. 7, 2012, Article ID: e40155.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.