Share This Article:

Morphology, Thermal Behavior and Dynamic Rheological Properties of Wood Polypropylene Composites

Abstract Full-Text HTML Download Download as PDF (Size:1826KB) PP. 730-738
DOI: 10.4236/msa.2013.411092    4,045 Downloads   6,151 Views   Citations

ABSTRACT

Wood polymer composites (WPCs) were made with pine and polypropylene matrix (PP). The composites were produced by melt blending in a Brabender at 180°C. Characterization of the samples, with the aid of scanning electron microscopy supplemented by microscope photography, showed an improved dispersion of wood in the polymeric material in presence of polypropylene grafted with maleic anhydride (MAPP) or nanoclay. The use of the MAPP instead of clay seems to have enhanced the level of crystallinity in the composites for the same levels of wood loading and also accelerates the crystallization. Melt rheological measurements of neat PP and PP-wood composites were carried out at 180°C with an ARES Rheometer scientific mechanical spectrometer in oscillatory frequency. All the composites materials exhibit viscoelastic values greater than those for neat PP. The samples containing MAPP as comptabilizer show the higher Newtonian viscosity, however, the addition of a small concentration of nanoparticles like nanoclays does not improve the resulting melt viscoelastic behavior of the composite.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Ndiaye, V. Verney, H. Askanian, S. Commereuc and A. Tidjani, "Morphology, Thermal Behavior and Dynamic Rheological Properties of Wood Polypropylene Composites," Materials Sciences and Applications, Vol. 4 No. 11, 2013, pp. 730-738. doi: 10.4236/msa.2013.411092.

References

[1] R. Malkapuram, K. Vivek and Y. S. Negi, “Novel Treated Pine Needle Fiber Reinforced Polypropylene Composites and Their Characterization,” Journal of Reinforced Plastics and Composites, Vol. 28, No. 10, 2009, pp. 1169-1175. http://dx.doi.org/10.1177/0731684407087759
[2] A. K. Bledzki and O. Faruk, “Wood Fibre Reinforced Polypropylene Composites: Effect of Fibre Geometry and Coupling Agent on Physico-Mechanical Properties,” Applied Composite Materials, Vol. 10, No. 6, 2003, pp. 351-356. http://dx.doi.org/10.1023/A:1025741100628
[3] D. Ndiaye, L. M. Matuana, S. Morlat-Thérias, J. L. Gardette and A. Tidjani, “Thermal and Mechanical Properties of Polypropylene/Wood-Flour Composites,” Journal of Applied Polymer Science, Vol. 119, No. 6, 2011, pp. 3321-3328. http://dx.doi.org/10.1002/app.32985
[4] K. Kyu-Nam, K. Hyungsu and L. Jae-Wook, “Effect of Interlayer Structure, Matrix Viscosity and Composition of a Functionalized Polymer on the Phase Structure of Polypropylene-Montmorillonite Nanocomposites,” Polymer Engineering & Science, Vol. 41, No. 11, 2001, pp. 1963-1969. http://dx.doi.org/10.1002/pen.10892
[5] T. J. Keener, R. K. Stuart and T. K. Brown, “Maleated Coupling Agents for Natural Fibre Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 35, No. 3, 2004, pp. 357-362.
http://dx.doi.org/10.1016/j.compositesa.2003.09.014
[6] M. Bengsson and K. Oksman, “Silane Crosslinked Wood Plastic Composites: Processing and Properties,” Composites Science and Technology, Vol. 66, No. 13, 2006, pp. 2177-2186.
http://dx.doi.org/10.1016/j.compscitech.2005.12.009
[7] R. G. Raj, B. V. Kokta, D. Maldas and C. Deneault, “Use of Wood Fibers in Thermoplastics. The Effect of Coupling Agents in Polyethylene-Wood Fiber Composites”, Journal of Applied Polymer Science, Vol. 37, No. 4, 1989, pp. 1089-1103.
http://dx.doi.org/10.1002/app.1989.070370420
[8] O. Faruk and L. M. Matuana, “Nanoclay Reinforced HDPE as a Matrix for Wood-Plastic Composites,” Composites Science and Technology, Vol. 68, No. 9, 2008, pp. 2073-2077. http://dx.doi.org/10.1016/j.compscitech.2008.03.004
[9] Y. Zhong, T. Poloso, M. Hetzer and D. Kee, “Enhancement of Wood/Polyethylene Composites via Compatibilization and Incorporation of Organoclay Particles,” Polymer Engineering & Science, Vol. 47, No. 6, 2007, pp. 797-803. http://dx.doi.org/10.1002/pen.20756
[10] B. V. Kokta, R. G. Raj and C. Deneault, “Use of Wood Flour as Eller in Polypropylene: Studies on Mechanical Properties,” Polymer-Plastics Technology and Engineering, Vol. 28, No. 3, 1989, pp. 247-259.
http://dx.doi.org/10.1080/03602558908048598
[11] G. E. Meyers, C. Clemens, J. J. Balatinecz and R. T. Woodhams, “Effects of Composition and Polypropylene Melt Flow on Polypropylene-Waste Newspaper Composites,” Proceeding of the Annual Technical Conference, No. 50, 1992, pp. 602-604.
[12] P. W. Balasuriya, L. Ye and Y. W. Mai, “Mechanical Properties of Wood Flake-Polyethylene Composites. Part I. Effects of Processing Methods and Matrix Melt Flow Behavior,” Composites, Part A, Vol. 32, 2001, pp. 619-629. http://dx.doi.org/10.1016/S1359-835X(00)00160-3
[13] J. Z. Lu, Q. Wu and H. S. McNabb, “Chemical Coupling in Wood Beer and Polymer Composites: A Review of Coupling Agents and Treatments,” Wood and Fiber Science, Vol. 32, 2000, pp. 88-104.
[14] T. Q. Li and R. K. Y. Li, “Impact Behavior of Sawdust/ Recycled-PP Composites,” Journal of Applied Polymer Science, Vol. 81, No. 6, 2001, pp. 1420-1428.
http://dx.doi.org/10.1002/app.1567
[15] L. Valentini, J. Biagiotti, J. M. Kenny and S. Santucci, “Morphological Characterization of Single-Walled Carbon Nanotubes-PP Composites,” Composites Science and Technology, Vol. 63, No. 8, 2003, pp. 1149-1153.
http://dx.doi.org/10.1016/S0266-3538(03)00036-8
[16] L. Mandelkern, “Crystallization of Polymers,” Series in Advanced Chemistry, McGraw-Hill, New York, 1964.
[17] E. M. Norma and M. A. Villar, “Thermal and Mechanical Characterization of Linear Low-Density Polyethylene/ Wood Flour Composites,” Journal of Applied Polymer Science, Vol. 90, No. 10, 2003, pp. 2775-2784.
http://dx.doi.org/10.1002/app.12934
[18] V. Hristov and S. Vasileva, “Dynamic Mechanical and Thermal Properties of Modified Polypropylene Wood Fiber Composites,” Macromolecular Materials and Engineering, Vol. 288, No. 10, 2003, pp. 798-806.
http://dx.doi.org/10.1002/mame.200300110
[19] A. Kumar, S. Commereuc and V. Verney, “Thermal and Dynamic Mechanical Characterization of PolypropyleneWood Flour Composites,” Polymer Degradation and Stability, Vol. 85, 2004, pp. 751-757.
http://dx.doi.org/10.1016/j.polymdegradstab.2003.11.014
[20] D. Ndiaye, E. Fanton, S. Morlat-Thérias, J. L. Gardette and A. Tidjani, “Durability of Wood Polymer Composites: Part 1. Influence of Wood on the Photochemical Properties,” Composites Science and Technology, Vol. 68, No. 13, 2008, pp. 2779-2784.
http://dx.doi.org/10.1016/j.compscitech.2008.06.014
[21] G. Marosi, A. Tohl, G. Bertalan, P. Anna, M. A. Maatoug, I. Ravadits, I. Bertol and A. Toth, “Modified Interfaces in Multicomponent Polypropylene Fibers,” Composites Part A: Applied Science and Manufacturing, Vol. 29A, No. 9-10, 1998, pp. 1305-1311.
http://dx.doi.org/10.1016/S1359-835X(98)00047-5
[22] I. Ravadits, A.Toth, G. Marosi, A. Marton and A. Szep, “Organosilicon Surface Layer on Polyolefins to Achieve Improved Flame Retardancy through an Oxygen Barrier Effect,” Polymer Degradation and Stability, Vol. 74, No. 3, 2001, pp. 419-422.
http://dx.doi.org/10.1016/S0141-3910(01)00179-3
[23] P. Anna, G. Marosi, S. Bourbigot, M. Lebras and R. Delobel, “Intumescent Flame Retardant System of Modified Rheology,” Polymer Degradation and Stability, Vol. 77, No. 2, 2002, pp. 243-247.
http://dx.doi.org/10.1016/S0141-3910(02)00040-X
[24] B. Li and J. He, “Investigation of Mechanical Property, Flame Retardancy and Thermal Degradation of LLDPE Wood-Fibre Composites,” Polymer Degradation and Stability, Vol. 83, No. 2, 2004, pp. 241-246.
http://dx.doi.org/10.1016/S0141-3910(03)00268-4
[25] K. Na, H. S. Park, H. Y. Won, J. K. Lee, K. H. Lee, J. Y. Nam and B. S. Jin, “SALS Study on Transcrystallization and Fiber Orientation in Glass Fiber/Polypropylene Composites”, Macromolecular Research, Vol. 14, 2006, pp. 499-503. http://dx.doi.org/10.1007/BF03218715
[26] M. Pracella, D. Chionna, I. Anguillesi, Z. Kulinski and E. Piorkowska, “Functionalization, Compatibilization and Properties of Polypropylene Composites with Hemp Fibres,” Composites Science and Technology, Vol. 66, No. 13, 2006, pp. 2218-2230.
http://dx.doi.org/10.1016/j.compscitech.2005.12.006
[27] U. Somnuk, G. Eder, P. Phinyocheep, N. Suppakarn, W. Sutapun and Y. Q. Ruksakulpiwat, “Crystallization of Natural Fibers-Polypropylene Composites,” Journal of Applied Polymer Science, Vol. 106, No. 5, 2007, pp. 2997-3006. http://dx.doi.org/10.1002/app.26883
[28] N. E. Zafeiropoulos, D. R. Williams and C. A. Baillie, “Engineering and Characterization of the Interface in Flax Fibre/Polypropylene Composite Materials. Part I. Development and Investigation of Surface Treatments,” Composites Part A: Applied Science and Manufacturing, Vol. 33, No. 8, 2002, pp. 1083-1093.
http://dx.doi.org/10.1016/S1359-835X(02)00082-9
[29] A. Arbelaiz, B. Fernandez, J. A. Ramos, et al., “Thermal and Crystallization Studies of Short Flax Fibre Reinforced Polypropylene Matrix Composites: Effect of Treatments,” Thermochimica Acta, Vol. 440, No. 2, 2006, pp. 111-121. http://dx.doi.org/10.1016/j.tca.2005.10.016
[30] T. G. Gopakumar, J. A. Lee, M. Kontopoulou and J. S. Parent, “Influence of Clay Exfoliation on the Physical Properties of Montmorillonite/Polyethylene Composites,” Polymer, Vol. 43, No. 8, 2002, pp. 5483-5491.
http://dx.doi.org/10.1016/S0032-3861(02)00403-2
[31] H. Zhai, W. Xu, H. Guo, Z. Zhou, S. Shen and Q. Song, “Preparation and Characterization of PE and PE-g-MAH/ Montmorillonite Nanocomposites,” European Polymer Journal, Vol. 40, No. 11, 2004, pp. 2539-2545.
http://dx.doi.org/10.1016/j.eurpolymj.2004.07.009
[32] S. Borysiak, D. Paukszta and M. Helwig, “Flammability of Wood-Polypropylene Composites,” Polymer Degradation and Stability, Vol. 91, No. 12, 2006, pp. 3339-3343.
http://dx.doi.org/10.1016/j.polymdegradstab.2006.06.002

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.