The Synergy of Combined Use of DMSO and Bronsted Acid (Ionic Liquid) as a Catalyst Part I: Efficient Niementowski Synthesis of Modified Quinazolinones


A new rapid and versatile approach using Ionic liquid/DMSO as a chemical reagent for the synthesis of fused heterocyclic compounds in a highly efficient way is described. This method offers the advantages of proceeding in neutral conditions, giving high to excellent isolated yields (83–92%) for Niementowski synthesis with easy workup procedure. The inherent Bronsted acidity of ionic liquid and high polarity of both IL and DMSO resulted in a significant enhancement in the reaction rate.

Share and Cite:

M. Kathiravan, R. Jalnapurkar, T. Chitre, R. Tamboli and K. Srinivasan, "The Synergy of Combined Use of DMSO and Bronsted Acid (Ionic Liquid) as a Catalyst Part I: Efficient Niementowski Synthesis of Modified Quinazolinones," Green and Sustainable Chemistry, Vol. 1 No. 1, 2011, pp. 12-18. doi: 10.4236/gsc.2011.11003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Y. Asahina and K. Kashiwaki, “Chemical Constituents of the Fruits of Evodia Rutaecarpa,” Yakugaku Zasshi, Vol. 405, 1915, pp. 1273-1293.
[2] L. R. Sheu, W. C. Hung, Y. M. Lee and M. H. Yen, “Mechanism of Inhibition of Platelet Aggregation by Rutaecarpine, an Alkaloid Isolated from Evodia Rutaecarpa,” European Journal of Pharmacology, Vol. 318, 1996, pp. 469-475.
[3] W. F. Chiou, J. F. Liao and C. F. Chen, “Comparative Study on Vasodilatory Effects of Three Quinazoline Alkaloids Isolated from Evodia Rutaecarpa,” Journal of Natural Products, Vol. 59, 1996, pp. 374-378. doi:10.1021/np960161+
[4] S. Hibino and T. Choshi, “Simple Indole Alkaloids and Those with a Nonrearranged Monoterpenoid Unit,” Natural Product Reports, Vol. 18, 2001, pp. 66-87. doi:10.1039/b004055j
[5] T. C. Moon, M. Murakami, I. Kudo, K. H. Son, H. P. Kim, S. S. Kang and H. W. Chang, “A New Class of COX-2 Inhibitor, Rutaecarpine from Evodia Rutaecarpa,” Inflammation Research, Vol. 48, 1999, pp. 621-625. doi:10.1007/s000110050512
[6] H. K. Raymond, “Sur la Ceto-yobyrine,” Comptes Rendus, Vol. 226, 1948, pp. 1379-1381.
[7] J. Tames, G. Bujtas, K. Horvath-Dora and O. Clauder, “Alkaloids Containing the Indolo [2,3-c]-quinazolino- [3,2-a] Pyridine Skeleton, IV. The Mass Spectra of Rutaecarpine, Evodiamine and 3,14-Dihydrorutaecarpine,” Acta Chimica Academiae Scientiarum Hungaricae, Vol. 89, 1976, pp. 85-89.
[8] S. H. Lee, J. K Son, B. S. Jeong, T. C. Jeong, W. C. Hyeon, E. S. Lee and Y. Jahng, “Progress in the Studies on Rutaecarpine,” Molecules, Vol. 13, No. 2, 2008, pp. 272-300. doi:10.3390/molecules13020272
[9] A. Hamid, A. Elomrib and A. Daich, “Expedious and Practical Synthesis of the Bioactive Alkaloids Rutaecarpine, Euxylophoricine A, Deoxyvasicinone and Their Heterocyclic Homologues,” Tetrahedron Letters, Vol. 47, 2006, pp. 1777-1781.
[10] L. M. Yang, S. J Lin, L. C Lin and Y. H. Kuo, “Antitumor Agents. 2. Synthesis and Cytotoxic Evaluation of 10-bromorutaecarpine,” Chinese Pharmaceutical Journal, Vol. 51, 1999, pp. 219-225.
[11] H. Miyamatsn, S. Ueno, M. Shimizu, J. Hosono, M. Tomari, K. Seida, T. Suzuki and J. Wada, “New Nonsteroidal Antiinflammatory Agent. 3. Analogs of 2-substituted 5-benzothiazoleacetic Acids and Their Derivatives,” Journal of Medicinal Chemistry, Vol. 17, 1974, pp. 491-496. doi:10.1021/jm00251a004
[12] E. Bansal, T. Ram, S. Sharma, M. Tyagi, A. P. Rani, K. Bajaj, R. Tyagi, B. Goel, V. K. Srivastava, J. N. Gurtu and A. Kumar, “Thiazolidinyl-triazinoquinazolines as Potent Anti-inflammatory Agents,” Indian Journal of Chemistry, Vol. 40B, 2001, p. 307.
[13] K. Okumura, T. Oine, Y. Yamada, G. Hayashi, M. Nakama and T. Nose, “4-Oxo-1,2,3,4-tetrahydroquinazolines. II. Synthesis of 1-Alkyl- and 1-[2,(Distributed amino) ethyl]- 2-methyl-3-aryl-4-oxo-1,2,3,4-tetrahydroquinazolines,” Journal of Medicinal Chemistry, Vol. 11, 1968, pp. 788-792. doi:10.1021/jm00310a611
[14] K. Ozaki, Y. Yamada, T. Oine, T. Ishizuka and Y. Iwasawa, “Studies on 4(1H)-Quinazolinones. 5. Synthesis and Antiinflammatory Activity of 4(1H)-Quinazolinone Derivatives,” Journal of Medicinal Chemistry, Vol. 28, 1985, pp. 568-576. doi:10.1021/jm50001a006
[15] H. Itahana, T. Kamikubo, E. Nozawa, H. Kaku, M. Okada, T. Toya and A. Nakamura, PCT International Application, 2002, WO 2002062803; Chemical Abstracts, Vol. 137, 2002, p. 169542.
[16] L. M. Lima and E. J. Barreiro, “Bioisosterism: A Useful Strategy for Molecular Modification and Drug Design,” Current Medicinal Chemistry, Vol. 12, 2005, pp. 23-49.
[17] S. S. Laddha and S. P. Bhatnagar, “A New Therapeutic Approach in Parkinson’s Disease: Some Novel Quinazoline Derivatives as Dual Selective Phosphodiesterase 1 Inhibitors and Anti-inflammatory Agents,” Bioorganic & Medicinal Chemistry, Vol. 17, 2009, pp. 6796-6802. doi:10.1016/j.bmc.2009.08.041
[18] M. S. Manhas, S. D. Sharma and S. G. Sharma, “Heterocyclic Compounds. 4. Synthesis and Antiinflammatory Activity of Some Substituted Thienopyrimidones,” Journal of Medicinal Chemistry, Vol. 15, 1972, pp. 106-107. doi:10.1021/jm00271a034
[19] M. J. Kulshreshtha, S. Bhatt, P. Madhuri and N. M. Khanna, “Synthesis of 2-methyl, 3-aryl or arylalkyl 5, 6-dimethyl or Polymethylene Thieno [2,3-d]-Pyrimidine- 4-ones,” Journal of the Indian Chemical Society, Vol. 58, No. 10, 1981, p. 982.
[20] S. J. von Niementowski, “Synthesen von Chinazolinver- bindungen,” Journal für Praktische Chemie, Vol. 51, 1895, pp. 564-572.
[21] D. J. Brown, Quinazolines, Supplement I. Interscience Publishers, New York, 1996, pp. 1-150. W. L. F. Armarego, In: Fused Pyrimidines; D. J. Brown, Ed.; Interscience Publishers, New York, 1967, pp. 89-218.
[22] E. S. Lee, J. G. Park and Y. Jahng, “A Facile Synthesis of Simple Alkaloids-Synthesis of 2,3-polymethylene-4(3H)- quinazolinones and Related Alkaloids,” Tetrahedron Letters, Vol. 44, 2003, pp. 1883-1886. doi:10.1016/S0040-4039(03)00080-7
[23] S. S. Laddha and S. P. Bhatnagar, “Efficient Niementowski Synthesis of Novel 1,3,10,12-tetra- substituted-8H-pyrido- [2',3':4,5]pyrimido[6,1-b]quinazolin-8-ones,” Arkivoc, Vol. (xvi), 2007, pp. 1-11.
[24] S. S. Laddha and S. P Bhatnagar, “Efficient Niementowski Synthesis of Novel Derivatives of 1,2,9,11-tetrasub- stituted-7H-thieno[2',3':4,5]pyrimido[6,1-b]-quinazolin-7- one,” Arkivoc, Vol. (xvii), 2008, pp. 212-220.
[25] (a) T. Welton, “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis,” Chemical Reviews, Vol. 99, 1999, pp. 2071-2083. doi:10.1021/cr980032t (b) P. Wasserscheid and W. Keim, “Ionic Liquids-New ‘Solutions’ for Transition Metal Catalysis,” Angewandte Chemie International Edition, Vol. 39, 2000, pp. 3772-3789. (c) J. Dupont, R. F. de Souza and P. A. Z. Suarez, “Ionic Liquid (Molten Salt) Phase Organometallic Catalysis,” Chemical Reviews, Vol. 102, 2002, pp. 3667-3692. (d) N. Jain, A. Kumar, S.
[26] John S. Wilkes, In: P. Wasserscheid and T. Welton, Eds., Ionic Liquids in Synthesis, 2nd Edition, VCH-Wiley, Weinheim, 2007.
[27] I. Newington, J. M. Perez-Arlandis and T. Welton, “Ionic Liquids as Designer Solvents for Nucleophilic Aromatic Substitutions,” Organic Letters, Vol. 9, No. 25, 2007, pp. 5247-5250.
[28] S. S. Palimkar, S. A. Siddiqui, T. Daniel, R. J. Lahoti and K. V. Srinivasan, “Ionic Liquid-Promoted Regiospecific Friedlander Annulation: Novel Synthesis of Quinolines and Fused Polycyclic Quinolines,” Journal of Organic Chemistry, Vol. 68, 2003, pp. 9371-9378.
[29] S. N. Dighe, K. S. Jain and K. V. Srinivasan, “A Novel Synthesis of 1-aryl Tetrazoles Promoted by Employing the Synergy of the Combined Use of DMSO and an Ionic Liquid as the Solvent System at Ambient Temperature,” Tetrahedron Letters, Vol. 50, 2009, pp. 6139-6142. doi:10.1016/j.tetlet.2009.08.063
[30] M. K. Kathiravan, C. J. Shishoo, S. K. Roy, K. R. Mahadik, S. S. Kadam and K. S. Jain, “Synthesis and Antihyperlipidemic Activity of Some Novel Condensed 2- chloroalkyl-4-chloro/hydroxy-5,6-disubstituted Pyrimidines,” Arzneimittel-Forschung/Drug Research, Vol. 57, No. 9, 2007, pp. 599-604.
[31] M. S. Phoujdar, M. K. Kathiravan, J. B. Bariwal, A. K. Shah and K. S. Jain, “Microwave-based Synthesis of Novel Thienopyrimidine Bioisosteres of Gefitinib,” Tetrahedron Letters, Vol. 49, 2008, pp. 1269-1273. doi:10.1016/j.tetlet.2007.11.135
[32] K. S. Jain, J. B. Bariwal, M. S. Phoujdar, R. D. Amrutkar, M. K. Munde, R. S. Tamboli, S. A. Khedkar, R. H. Khiste, N. C. Vidyasagar, V. V. Dabholkar and M. K. Kathiravan, “A Novel Microwave-assisted Green Synthesis of Condensed 2-substituted-pyrimidin-4(3H)-ones under Solvent-free Conditions,” Journal of Heterocyclic Chemistry, Vol. 46, No. 2, 2009, pp. 178-185.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.