Speciation of Dissolved Trace Nickel in Environmental Waters by On-Line Sonodigestion-Flow Injection Solid Phase Extraction Coupled to Flame Atomic Absorption Spectrometry
M. C. Yebra-Biurrun, J. M. Castro-Romero
.
DOI: 10.4236/ajac.2011.22013   PDF    HTML     6,257 Downloads   11,834 Views   Citations

Abstract

A simple on-line sonodigestion system was successfully used for breakdown organic nickel complexes in environmental waters acidified with diluted nitric acid prior to flow injection total dissolved nickel preconcentration in a microcolumn containing a chelating resin (Chelite Che with iminodiacetic acid groups) and determination by flame atomic absorption spectrometry. For the determination of the dissolved labile nickel fraction, microcolumns packed with the chelating resin were loaded in-situ with the sample without sample pH modification, and once in the laboratory were inserted in the flow injection device where nickel elution-detection was carried out. The performance of the chelating resin was investigated in order to elucidate its behavior in the presence of dissolved nickel species. The results obtained reveal that the resin, at the experimental employed conditions, retained only dissolved free nickel ions and nickel bound to weak complexes (labile fraction). The figures of merit for determinations in both nickel fractions are given and the obtained values are discussed. The speciation scheme is applied to the analysis of nickel in river and seawater samples collected in Galicia (Northwest, Spain). The results of fractionation showed that Ni are mainly in the dissolved labile fraction in river water, while in seawater samples analyzed was mainly present in the organic fraction.

Share and Cite:

M. Yebra-Biurrun and J. Castro-Romero, "Speciation of Dissolved Trace Nickel in Environmental Waters by On-Line Sonodigestion-Flow Injection Solid Phase Extraction Coupled to Flame Atomic Absorption Spectrometry," American Journal of Analytical Chemistry, Vol. 2 No. 2, 2011, pp. 116-125. doi: 10.4236/ajac.2011.22013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Mandal, N. M. Hassan, J. Murimboh, C. L. Chakrabarti and M. H. Back, “Chemical Speciation and Toxicity of Nickel Species in Natural Waters from the Sudbury Area (Canada),” Environmental Science and Technology, Vol. 36, No. 7, 2002, pp. 1477-1484. doi:10.1021/es015622e
[2] R. Cornellis, J. Caruso, H. Crews and K. Heumann, “Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine and Occupational Health,” John Wiley & Sons Ltd., Chichester, 2005.
[3] M. Martino, A. Turner and M. Nimmo, “Distribution, Speciation and Particle-Water Interactions of Nickel in the Mersey Estuary, UK,” Marine Chemistry, Vol. 88, No. 3-4, 2004, pp.161-177. doi:10.1016/j.marchem.2004.03.007
[4] J. D. Thomas, “The Role of Dissolved Organic Matter, Particularly Free Amino Acids and Humic Substances, in Freshwater Ecosystems,” Freshwater Biology, Vol. 38, No. 1, 1997, pp. 1-36. doi:10.1046/j.1365-2427.1997.00206.x
[5] L. E. Doig and K. Liber, “Nickel Speciation in the Presence of Different Sources and Fractions of Dissolved Organic Matter,” Ecotoxicology and Environmental Safety, Vol. 66, No. 2, 2007, pp. 169-177. doi:10.1016/j.ecoenv.2005.12.011
[6] I. V. Slaveykova, I. B. Karadjova, M. Karadjov and D. L. Tsalev, “Trace Metal Speciation and Bioavailability in Surface Waters of the Black Sea Coastal Area Avaluated by HF-PLM and DGT,” Environmental Science and Tec- hnology, Vol. 43, No. 6, 2009, pp. 1798-1803. doi:10.1021/es802544n
[7] M. Pesavento, G. Alberti and R. Biesuz, “Analytical Methods for Determination of Free Metal Ion Concentration, Labile Species Fraction and Metal Complexation Capacity of Environmental Waters: A Review,” Analytica Chimica Acta, Vol. 631, No. 2, 2009, pp. 129-141. doi:10.1016/j.aca.2008.10.046
[8] M. B. Alvarez, M. E. Malla and D. E. D. Batistoni, “Performance Evaluation of Two Chelating Ion-Exchange Sorbents for the Fractionation of Labile and Inert Metal Species from Aquatic Media,” Analytical and Bioanalytical Chemistry, Vol. 378, No. 2, 2004, pp. 438-446. doi:10.1007/s00216-003-2237-y
[9] K. C. Bowles, S. C. Apte, G. E. Batley, L. H. Hales and N. J. Rogers, “A Rapid Chelex Column Method for the Determination of Metal Speciation in Natural Waters,” Analytica Chimica Acta, Vol. 558, No. 1-2, 2006, pp. 237-245. doi:10.1016/j.aca.2005.10.071
[10] G. Alberti, R. Biesuz and M. Pesavento, “Determination of the Total Concentration and Speciation of Metal Ions in River, Estuarine and Seawater Samples,” Analytical Sciences, Vol. 24, No. 12, 2008, pp. 1605-1611. doi:10.2116/analsci.24.1605
[11] D. L. Giokas, J. Antelo, E. K. Paleologos, F. Arce and M. I. Karayannis, “Copper Fractionation with Dissolved Organic Matter in Natural Waters and Wastewaters—A Mixed Micelle Mediated Methodology (Cloud Point Extraction) Employing Flame Atomic Absorption Spectrometry,” Journal of Environmental Monitoring, Vol. 4, No. 4, 2002, pp. 505-510. doi:10.1039/b202668f
[12] G. M. Sawula, “On-Site Preconcentration and Trace Metal Ions Determination in the Okavango Delta Water System, Botswana,” Talanta, Vol. 64, No. 1, 2004, pp. 80-86. doi:10.1016/j.talanta.2003.11.048
[13] M. C. Yebra-Biurrun, A. Moreno-Cid and L. Puig, “Minicolumn Field Preconcentration and Flow-Injection Flame Atomic Absorption Spectrometric Determination of Cadmium in Seawater,” Analytica Chimica Acta, Vol. 524, No. 1-2, 2004, pp. 73-77. doi:10.1016/j.aca.2004.05.052
[14] K. Zih-Perényi and A. Lásztity, “On-Site Classification of Manganese Forms in Natural Waters by Membrane Filtration and Chelating Exchange,” Spectrochimica Acta B, Vol. 60, No. 3, 2005, pp. 385-392. doi:10.1016/j.sab.2005.01.009
[15] J. P. Lafleur and E. D. Salin, “Pre-Concentration of Trace Metals on Centrifugal Microfluidic Discs with Direct Determination by Laser Ablation Inductively Coupled Plasma Mass Spectrometry,” Journal of Analytical Ato- mic Spectrometry, Vol. 24, No. 11, 2009, pp. 1511-1516. doi:10.1039/b910276k
[16] F. C. Domínguez-Lledó, M. D. Galindo-Ria?o, I. C. Díaz-López, M. García-Vargas and M. D. Granado-Castro, “Applicability of a Liquid Membrane in Enrichment and Determination of Nickel Traces from Natural Waters,” Analytical and Bioanalytical Chemistry, Vol. 389, No. 2, 2007, pp. 653-659. doi:10.1007/s00216-007-1472-z
[17] A. Limbeck, “Microwave-Assisted UV-Digestion Procedure for the Accurate Determination of Pd in Natural Waters,” Analytica Chimica Acta, Vol. 575, No. 1, 2006, pp. 114-119. doi:10.1016/j.aca.2006.05.062
[18] E. P. Achterberg, C. B. Braungardt, R. C. Sandford and P. J. Worsfold, “UV Digestion of Seawater Samples Prior to the Determination of Copper Using Flow Injection with Chemiluminescence Detection,” Analytica Chimica Acta, Vol. 440, No. 1, 2001, pp. 27-36. doi:10.1016/S0003-2670(01)00824-8
[19] M. T. S. D. Vasconcelos and M. F. C. Leal, “Speciation of Cu, Pb, Cd and Hg in Waters of the Oporto Coast in Portugal, Using Pre-Concentration in a Chelamine Resin Column,” Analytica Chimica Acta, Vol. 353, No. 2-3, 1997, pp. 189-198. doi:10.1016/S0003-2670(97)87777-X
[20] N. Ndung’u, R. P. Franks, K. W. Bruland and A. R. Flegal, “Organic Complexation and Total Dissolved Trace metal Analysis in Estuarine Waters: Comparison of Solvent-Extraction Graphite Furnace Atomic Absorption Spectrometric and Chelating Resin Flow Injection Inductively Coupled Plasma-Mass Spectrometric Analysis,” Analytica Chimica Acta, Vol. 481, No. 1, 2003, pp. 127-138. doi:10.1016/S0003-2670(03)00063-1
[21] D. Point, G. Bareille, H. Pinaly, C. Belin and O. F. X. Donard, “Multielemental Speciation of Trace Elements in Estuarine Waters with Automated On-Site UV Photolysis and Resin Chelation Coupled to Inductively Coupled Plasma Mass Spectrometry,” Talanta, Vol. 72, No. 3, 2007, pp. 1207-1216. doi:10.1016/j.talanta.2007.01.014
[22] L. Venault, Ph. Moisy, S. I. Nikitenko and C. Madic, “Kinetics of Nitrous Acid Formation in Nitric Acid Solutions under the Effect of Power Ultrasound,” Ultrasonics Sonochemistry, Vol. 4. No. 2, 1997, pp. 195-204. doi:10.1016/S1350-4177(97)00010-2
[23] S. I. Nikitenko, L. Venault and Ph. Moisy, “Scavenging of OH Radicals Produced from H2O Sonolysis with Nitrate Ions,” Ultrasonics Sonochemistry, Vol. 11, No. 3-4, 2004, pp. 139-142. doi:10.1016/j.ultsonch.2004.01.009
[24] J. Madhavan, F. Grieser and M. Ashokkumar, “Degradation of Orange-G by Advanced Oxidation Processes,” Ultrasonics Sonochemistry, Vol. 17, No. 2, 2010, pp. 338-343. doi:10.1016/j.ultsonch.2009.10.008
[25] J. L. Capelo, I. Lavilla and C. Bendicho, “Room Temperature Sonolysis-Based Advanced Oxidation Process for Degradation of Organomercurials: Application To Determination Of Inorganic And Total Mercury In Waters By Flow Injection-Cold Vapor Atomic Absorption Spectrometry,” Analytical Chemistry, Vol. 72, No. 20, 2000, pp. 4979-4984. doi:10.1021/ac000470b
[26] R. M. Cespón-Romero and M. C. Yebra-Biurrun, “Determination of Trace Metals in Urine with an On-Line Ultrasound-Assisted Digestion System Combined with a Flow-Injection Preconcentration Manifold Coupled to Flame Atomic Absorption Spectrometry,” Analytica Chimica Acta, Vol. 609, No. 2, 2008, pp. 184-191. doi:10.1016/j.aca.2008.01.002
[27] M. C. Yebra-Biurrun and N. Carro-Mari?o, “Flow Injection Flame Atomic Absorption Determination of Cu, Mn and Zn Partitioning in Seawater by On-Line Room Temperature Sonolysis and Minicolumn Chelating Resin Methodology,” Talanta, Vol. 83, No. 2, 2010, pp. 425-430. doi:10.1016/j.talanta.2010.09.045
[28] E. R. Weiner, “Applications of Environmental Aquatic Chemistry: A Practical Guide,” 2nd Edition, CRC Press, Boca Raton, 2008. doi:10.1201/9781420008371
[29] J. Hur, M. A. Schlautman and S. Yim, “Effects of Organic Ligands and pH on the Leaching of Copper from Brake Wear Debris in Model Environmental Solutions,” Journal of Environmental Monitoring, Vol. 6, No. 1, 2004, pp. 89-94. doi:10.1039/b310125h
[30] M. C. Yebra-Biurrun, A. Bermejo-Barrera, M. L. Mella-Louzao and M. P. Bermejo-Barrera, “Determination of Copper Traces in Water by Atomic Absorption Spectrometry,” Quimica Analitica, Vol. 10, No. 1, 1991, pp. 59-64.
[31] L. A. Currie, “Nomenclature in Evaluation of Analytical Methods Including Detection and Quantification Capabilities (IUPAC Recommendations 1995),” Analytica Chimica Acta, Vol. 391, No. 2, 1999, pp. 105-126. doi:10.1016/S0003-2670(99)00104-X

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.