Controlled Growth of Well-Aligned Carbon Nanotubes, Electrochemical Modification and Electrodeposition of Multiple Shapes of Gold Nanostructures


An efficient method has been developed to synthesize well-aligned multi-walled carbon nanotubes (MWCNTs) on a conductive Ta substrate by chemical vapour deposition (CVD). Free-standing MWCNTs arrays were functionalized through electrochemical oxidation with the formation of hydroxyl and carboxyl functional groups. Using a new oven drying technique, we demonstrate that the unidirectionally aligned and laterally spaced geometry of the CNT arrays can be retained after being subjected to each step of electrochemical modification. Samples were analyzed by using a field emission scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transformed infrared (FTIR) and Raman spectroscopy. Useful electrochemical methods for the synthesis of various gold nanostructures onto the aligned MWCNTs were then presented for the first time. The results demonstrated that flowerlike nanoparticle arrays, nanosheets and nanoflowers were obtained on the aligned CNTs under different experimental conditions. These kinds of aligned-CNT/Au nanostructures hybrid materials introduced by these efficient and simple electrochemical methods could lead to development of a new generation device for ultrasensitive catalytic and biological application.

Share and Cite:

H. Fayazfar, A. Afshar and A. Dolati, "Controlled Growth of Well-Aligned Carbon Nanotubes, Electrochemical Modification and Electrodeposition of Multiple Shapes of Gold Nanostructures," Materials Sciences and Applications, Vol. 4 No. 11, 2013, pp. 667-678. doi: 10.4236/msa.2013.411083.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature (London), Vol. 354, 1991, pp. 56-58.
[2] C. Li, D. Wang, T. Liang, X. Wang and L. Ji, “A Study of Activated Carbon Nanotubes as Double-Layer Capacitors Electrode Materials,” Materials Letter, Vol. 58, No. 29, 2004, pp. 3774-3777.
[3] J. Riu, A. Maroto and F. X. Rius, “Nanosensors in Environmental Analysis,” Talanta, Vol. 69, No. 2, 2006, pp. 288-301.
[4] J. Zhang and L. Gao, “Synthesis of Highly Dispersed Platinum Nanoparticles on Multiwalled Carbon Nanotubes and Their Electrocatalytic Activity toward Hydrogen Peroxide,” Journal of Alloys and Compounds, Vol. 505, 2010, pp. 604-608.
[5] W. D. Zhang, B. Xu, Y. X. Hong, Y. X. Yu, J. S. Ye and J. Q. Zhang, “Electrochemical Oxidation of Salicylic Acid at Well-Aligned Multiwalled Carbon Nanotube Electrode and Its Detection,” Journal of Solid State Electrochemistry, Vol. 14, 2010, pp. 1713-1718.
[6] P. G. Collins, K. Bradley, M. Ishigami and A. Zettl, “Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes,” Science, Vol. 287, 2000, pp. 1801-1804.
[7] L. Dai, A. Patil, X. Gong, Z. Guo, L. Liu, Y. Liu and D. Zhu, “Aligned Nanotubes,” Chemical Physics and Physical Chemistry, Vol. 4, No. 11, 2003, pp. 1150-1169.
[8] S. Talapatra, S. Kar, S. K. Pal, R. Vajtai, P. Victor, M. M. Shaijumonet, S. Kaur, O. Nalamasu and P. M. Ajayan, “Direct Growth of Aligned Carbon Nanotubes on Bulk Metals,” Nature Nanotechnology, Vol. 1, 2006, pp. 112-116.
[9] L. Qu and L. Dai, “Direct Growth of Multicomponent Micropatterns of Vertically-Aligned Single-Walled Carbon Nanotubes Interposed with Their Multi Walled Counterparts on Al-Activated Iron Substrates,” Journal of Materials Chemistry, Vol. 17, 2007, pp. 3401-3405.
[10] J. F. AuBuchon, L. H. Chen, A. I. Gapin, D. W. Kim, C. Daraio and S. Jin, “Multiple Sharp Bendings of Carbon Nanotubes during Growth to Produce Zigzag Morphology,” Nano Letters, Vol. 4, No. 9, 2004, pp. 1781-1784.
[11] W. Wu, S. Wieckowski, G. Pastorin, M. Benincasa, C. Klumpp, J. P. Briand, R. Gennaro, M. Prato and A. Bianco, “Targeted Delivery of Amphotericin B to Cells by Using Functionalized Carbon Nanotubes,” Angewandte Chemie International Edition, Vol. 44, No. 39, 2005, pp. 6358-6362.
[12] D. Tasis, N. Tagmatarchis, A. Bianco and M. Prato, “Chemistry of Carbon Nanotubes,” Chemical Reviews, Vol. 106, No. 3, 2006, pp. 1105-1136.
[13] J. Jang, J. Bae and S. H. Yoon, “A Study on the Effect of Surface Treatment of Carbon Nanotubes for Liquid Crystalline Epoxide-Carbon Nanotube Composites,” Journal of Materials Chemistry, Vol. 13, 2003, pp. 676-681.
[14] Y. T. Shieh, G. L. Liu, H. H. Wu and C. C. Lee, “Effects of Polarity and pH on the Solubility of Acid-Treated Carbon Nanotubes in Different Media,” Carbon, Vol. 45, No. 9, 2007, pp. 1880-1890.
[15] B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas and L. G. Bachas, “Aligned Multiwalled Carbon Nanotube Membranes,” Science, Vol. 303, No. 5654, 2004, pp. 62-65.
[16] T. Dumitrica, M. E. Garcia, H. O. Jeschke and B. I. Yakobson, “Selective Cap Opening in Carbon Nanotubes Driven by Laser-Induced Coherent Phonons,” Physical Review Letters, Vol. 92, No. 11, 2004, pp. 117401-11704.
[17] H. Tang, J. H. Chen, Z. P. Huang, D. Z. Wang, Z. F. Ren, L. H. Nie, Y. F. Kuang and S. Z. Yao, “High Dispersion and Electrocatalytic Properties of Platinum on WellAligned Carbon Nanotube Arrays,” Carbon, Vol. 42, No. 1, 2004, pp. 191-197.
[18] C. L. Sun, L. C. Chen, M. C. Su, L. S. Hong, O. Chyan, C. Y. Hsu, K. H. Chen, T. F. Chang and L. Chang, “Ultrafine Platinum Nanoparticles Uniformly Dispersed on Arrayed CNx Nanotubes with High Electrochemical Activity,” Chemistry of Materials, Vol. 17, 2005, pp. 3749-3753.
[19] E. Shulga, K. Pohako, A. Treshchalov, U. Joost, V. Kisand and I. Kink, “Functionalisation of Aligned Carbon Nanotubes with Nitric Acid Vapour,” Micro & Nano Letters, Vol. 6, No. 8, 2011, pp. 704-708.
[20] S. F. Li, X. Y. Zhu, W. Zhang, G. M. Xie and W. L. Feng, “Hydrogen Peroxide Biosensor Based on Gold Nanoparticles/Thionine/Gold Nanoparticles/Multi-Walled Carbon Nanotubes-Chitosans Composite Film-Modified Electrode,” Applied Surface Science, Vol. 258, No. 7, 2012, pp. 2802-2807.
[21] C. Zheng, W. Chen, X. Ye, S. Cai, X. Xiao and M. Wang, “Preparation and Optical Limiting Properties of Carbon Nanotubes Coated with Au Nanoparticle Composites Embedded in Silica Gel-Glass,” Materials Letters, Vol. 65, 2011, pp. 150-152.
[22] D. Wang, H. Luo, R. Kou, M. Gil, S. Xiao, V. Golub, Z. Yang, C. Brinker and Y. Lu, “A General Route to Macroscopic Hierarchical 3D Nanowire Networks,” Angewandte Chemie International Edition, Vol. 43, No. 45, 2004, pp. 6169-6173.
[23] J. Kim, S. Cha, K. Shin, J. Y. Jho and J. C. Lee, “Preparation of Gold Nanowires and Nanosheets in Bulk Block Copolymer Phases under Mild Conditions,” Journal of Advanced Materials, Vol. 16, No. 5, 2004, pp. 459-464.
[24] X. Sun, S. Dong and E. Wang, “Large Scale, Templateless, Surfactantless Route to Rapid Synthesis of Uniform Poly (o-Phenylenediamine) Nanobelts,” Chemical Communications, Vol. 10, 2004, pp. 1182-1183.
[25] K. Caswell, C. Bender and C. Murphy, “Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires,” Nano Letters, Vol. 3, No. 5, 2003, pp. 667-669.
[26] X. Ni, Q. Zhao, H. Zheng, B. Li, J. Song, D. Zhang and X. Zhang, “A Novel Chemical Reduction Route towards the Synthesis of Crystalline Nickel Nanoflowers from a Mixed Source,” European Journal of Inorganic Chemistry, Vol. 2005, No. 23, 2005, pp. 4788-4793.
[27] J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, “Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes,” Journal of Electrochemical Society, Vol. 143, No. 1, 1996, pp. 159-169.
[28] A. Fraczek-Szczypta, E. Menaszek, T. B. Syeda, A. Misra, M. Alavijeh, J. Adu and S. Blazewicz, “Effect of MWCNT Surface and Chemical Modification on in Vitro Cellular Response,” Journal of Nanoparticle Research, Vol. 14, 2012, pp. 1181-1195.
[29] D. B. Mawhinney, V. Naumenko, A. Kuznetsova and J. T. Yates, “Infrared Spectral Evidence for the Etching of Carbon Nanotubes: Ozone Oxidation at 298 K,” Journal of American Chemical Society, Vol. 122, No. 10, 2000, pp. 2383-2384.
[30] S. Goyanes, G. R. Rubiolo, A. Salazar, A. Jimeno, M. A. Corcuera and I. Mondragon, “Carboxylation Treatment of Multiwalled Carbon Nanotubes Monitored by Infrared and Ultraviolet Spectroscopies and Scanning Probe Microscopy,” Diamond Related Materials, Vol. 16, No. 2, 2007, pp. 412-417.
[31] S. Sotiropoulou and N. A. Chaniotakis, “Carbon Nanotube Array-Based Biosensor,” Analytical and Bioanalytical Chemistry, Vol. 375, No. 1, 2003, pp.103-105.
[32] P. J. Britto, K. S. V. Santhanam, A. Rubio, J. A. Alonso and P. M. Ajayan, “Improved Charge Transfer at Carbon Nanotube Electrodes,” Advaced Materials, Vol. 11, No. 2, 1999, pp. 154-157.<154::AID-ADMA154>3.0.CO;2-B
[33] Y. T. Lee, N. S. Kim and J. Park, “Temperature-Dependent Growth of Carbon Nanotubes by Pyrolysis of Ferrocene and Acetylene in the Range between 700 and 1000°C,” Chemical Physics Letters, Vol. 372, No. 5-6, 2003, pp. 853-859.
[34] L. Ni, K. Kuroda, L. P. Zhou, T. Kizuka, K. Ohta and K. Matsuishi, “Kinetic Study of Carbon Nanotube Synthesis over Mo/Co/MgO Catalysts,” Carbon, Vol. 44, No. 11, 2006, pp. 2265-2272.
[35] F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite,” Journal of Chemical Physics, Vol. 53, 1970, pp. 1126-1130.
[36] P. W. Chiu, G. S. Duesberg, U. Dettlaff-Weglikowska and S. Roth, “Interconnection of Carbon Nanotubes by Chemical Functionalization,” Applied Physics Letters, Vol. 80, 2002, pp. 3811-3813.
[37] S. Chen, R. Yuan, Y. Chai, L. Zhang, N. Wang and X. Li, “Amperometric Third-Generation Hydrogen Peroxide Biosensor Based on the Immobilization of Hemoglobin on Multiwall Carbon Nanotubes and Gold Colloidal Nanoparticles,” Biosensors and Bioelectronics, Vol. 22, No. 7, 2007, pp. 1268-1274.
[38] A. Dolati, M. Ghorbani and M. R. Ahmadi, “An Electrochemical Study of Au-Ni Alloy Electrodeposition from Cyanide-Citrate Electrolytes,” Journal of Electroanalytical Chemistry, Vol. 577, No. 1, 2005, pp. 1-8.
[39] U, Schmidt, M. Donten and J. G. Osteryoung, “Gold Electrocrystallization on Carbon and Highly Oriented Pyrolytic Graphite from Concentrated Solutions of LiCl,” Journal of Electrochemical Society, Vol. 144, No. 6, 1997, pp. 2013-2021.
[40] G. Gunawardena, G. Hills, I. Montenegro and B. Scharifker, “Electrochemical Nucleation: Part I. General Considerations,” Journal of Electroanalytical Chemistry, Vol. 138, No. 2, 1982, pp. 225-239.
[41] Z. R. Tian, J. A. Voigt, M. Mcdermott and H. F. Xu, “Dendritic Growth of Cubically Ordered Nanoporous Materials through Self-Assembly,” Nano Letters, Vol. 3, No. 1, 2003, pp. 89-92.
[42] L. Wang, G. Wei, C. Guo, L. Sun, Y. Sun, Y. Song, T. Yang and Z. Li, “Photochemical Synthesis and Self-Assembly of Gold Nanoparticles,” Colloids and Surfaces A, Vol. 312, No. 2-3, 2008, pp. 148-153.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.