Effect of Inoculation with Three Phytohormone Producers Phytobacteria with ACC Deaminase Activity on Root Length of Lens esculenta Seedlings

Abstract

Plant-associated bacteria that inhabit the rhizosphere may influence the plant growth by their contribution to the endogenous pool of phytohormones and by the activity of ACC deaminase to decrease the ethylene concentration. The aim of this study was to analyse the root length growth by the promoting effect of indole acetic acid producers phytobacteria with ACC deaminase activity, on inoculated seeds of Lens esculenta as synergistic effect on root elongation. In this study, although the roots of L. esculenta seedlings do not show a significant promotion, these phytobacteria could be recommended to treat plants analyzing their added inoculum to increase plant biomass and retard the effect of ethylene on cultures supplied with Tryptophan and ACC.

Share and Cite:

N. Zazueta, O. Acosta, L. Herrera, R. Vázquez, E. López, A. Zúñiga and A. Dorantes, "Effect of Inoculation with Three Phytohormone Producers Phytobacteria with ACC Deaminase Activity on Root Length of Lens esculenta Seedlings," American Journal of Plant Sciences, Vol. 4 No. 11, 2013, pp. 2199-2205. doi: 10.4236/ajps.2013.411273.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. R. Glick, C. B. Jacobson, M. M. K. Schwarze and J. J. Pasternak, “1-Aminocyclopropane-1-carboxylic Acid Deaminase Plays a Role in Plant Growth Promotion by Pseudomonas putida GR12-2,” In: M. H. Ryder, P. M. Stephens and G. D. Bowen, Eds., Improving Plant Productivity with Rhizosphere Bacteria, CSIRO, Adelaide, 1994, pp. 150-152.
[2] B. R. Glick, C. B. Jacobson, M. M. K. Schwarze and J. J. Pasternak, “1-Aminocyclopropane-1-carboxylic Acid Deaminase Mutants of the Plant Growth Promoting Rhizobacteria Pseudomonas putida GR12-2 Do Not Stimulate Canola Root Elongation,” Canadian Journal of Microbiology, Vol. 40, No. 11, 1994, pp. 911-915.
http://dx.doi.org/10.1139/m94-146
[3] B. R. Glick, D. M. Penrose and J. Li, “A Model for the Lowering of Plant Ethylene Concentrations by Plant Growth-Promoting Bacteria,” Journal of Theoretical Biology, Vol. 190, No. 1, 1998, pp. 3-68.
http://dx.doi.org/10.1006/jtbi.1997.0532
[4] S. Mayak, T. Tivosh and B. R. Glick, “Effect of Wild Type and Mutant Plant Growth Promoting Rhizobacteria on the Rooting of Mung Been Cuttings,” Journal of Plant Growth Regulation, Vol. 18, No. 2, 1999, pp. 49-53.
http://dx.doi.org/10.1007/PL00007047
[5] B. Shaharoona, M. Arshad and Z. A. Zahir, “Effect of Plant Growth Promoting Rhizobacteria Containing ACC-Deaminase on Maize (Zea mays L.) Growth under Axenic Conditions and on Nodulation in Mung Bean (Vigna radiata L.),” Letters in Applied Microbiology, Vol. 42, No.2, 2006, pp. 155-159.
http://dx.doi.org/10.1111/j.1472-765X.2005.01827.x
[6] C. B. Jacobson, J. J. Pasternak and B. R. Glick, “Partial Purification and Characterization of 1-Aminocyclopropane-1-carboxylate Deaminase from the Plant Growth Promoting Rhizobacterium Pseudomonas putida GR12-2,” Canadian Journal of Microbiology, Vol. 40, No. 12, 1994, pp. 1019-1025. http://dx.doi.org/10.1139/m94-162
[7] B. R. Glick, “The Enhancement of Plant Growth by Free Living Bacteria,” Canadian Journal of Microbiology, Vol. 41, No. 2, 1995, pp. 109-114.
http://dx.doi.org/10.1139/m95-015
[8] J. Li, D. H. Ovakim, T. C. Charles and B. R. Glick, “An ACC Deaminase Minus Mutant of Enterobacter cloacae UW4 No Longer Promotes Root Elongation,” Current Microbiology, Vol. 41, No. 2, 2000, pp. 101-105.
http://dx.doi.org/10.1007/s002840010101
[9] D. M. Penrose, B. A. Moffatt and B. R. Glick, “Determination of 1-Aminocyclopropane-1-carboxylic Acid (ACC) to Assess the Effects of ACC Deaminase-Containing Bacteria on Roots of Canola Seedlings,” Canadian Journal of Microbiology, Vol. 47, No. 4, 2001, pp. 77-80.
http://dx.doi.org/10.1139/w00-128
[10] S. Ghosh, J. N. Penterman, R. D. Little, R. Chavez and B. R. Glick, “Three Newly Isolated Plant Growth-Promoting Bacilli Facilitate the Seedling Growth of Canola Brassica campestris,” Plant Physiology and Biochemistry, Vol. 41, No. 3, 2003, pp. 277-281.
http://dx.doi.org/10.1016/S0981-9428(03)00019-6
[11] B. Shaharoona, M. Arshad, Z. A. Zahir and A. Khalid, “Performance of Pseudomonas spp. Containing ACC-Deaminase for Improving Growth and Yield of Maize (Zea mays L.) in the Presence of Nitrogenous Fertilizer,” Soil Biology & Biochemistry, Vol. 38, No. 9, 2006, pp. 2971-2975.
http://dx.doi.org/10.1016/j.soilbio.2006.03.024
[12] B. R. Glick, “Modulation of Plant Ethylene Levels by the Bacterial Enzyme ACC Deaminase,” FEMS Microbiology Letters, Vol. 251, No. 1, 2005, pp. 1-7.
http://dx.doi.org/10.1016/j.femsle.2005.07.030
[13] M. Honma and T. Shimomura, “Metabolism of 1-Aminocyclopropane-1-carboxylic Acid,” Agricultural and Biological Chemistry, Vol. 42, No. 10, 1978, pp. 1825-1831.
http://dx.doi.org/10.1271/bbb1961.42.1825
[14] G. I. Burd, D. G. Dixon and B. R. Glick, “A Plant Growth-Promoting Bacterium that Decreases Nickel Toxicity in Seedlings,” Applied and Environmental Microbiology, Vol. 64, No. 10, 1998, pp. 3663-3668.
[15] C. L. Patten and B. R. Glick, “Bacterial Biosynhesis of Indole-3-Acetic Acid,” Canadian Journal of Mirobiology, Vol. 42, No. 3, 1996, pp. 207-220.
http://dx.doi.org/10.1139/m96-032
[16] X. F. Sheng and J. J. Xia, “Improvement of Rape (Brassica napus) Plant Growth and Cadmium Uptake by Cadmium-Resistant Bacteria,” Chemosphere, Vol. 64, No. 6, 2006, pp. 1036-1042.
http://dx.doi.org/10.1016/j.chemosphere.2006.01.051
[17] S. Zaidi, S. Usmami, B. R. Singh and J. Musarrat, “Significancce of Bacillus subtilis Strain SJ-101 as a Bioinoculant for Concurrent Plant Grown Promotion and Nickel Accumulation in Brassica juncea,” Chemosphere, Vol. 64, No. 6, 2006, pp. 991-997.
http://dx.doi.org/10.1016/j.chemosphere.2005.12.057
[18] J. M. Bric, R. M. Bostock and S. E. Silversone, “Rapid in Situ Assay for Indole Acetic Acid Production by Bacteria Immobilization on a Nitrocellulose Membrane,” Applied and Environmental Microbiology, Vol. 57, No. 2, 1991, pp. 535-538. PMid:16348419 PMCid:PMC182744
[19] M. R. Melo, N. R. Flores, S. V. Murrieta, A. R. Tovar, A. G. Zúñiga, O. F. Hernández, A. P. Mendoza, N. O. Pérez and A. R. Dorantes, “Comparative Plant Growth Promoting Traits and Distribution of Rhizobacteria Associated with Heavy Metals in Contaminated Soils,” International Journal of Environmental Science and Technology, Vol. 8, No. 4, 2011, pp. 807-816.
http://dx.doi.org/10.1007/BF03326264
[20] D. M. Penrose and B. R. Glick, “Methods for Isolating and Characterizing ACC Deaminase-Containing Plant Growth-Promoting Rhizobacteria,” Physiologia Plantarum, Vol. 118, No. 1, 2003, pp. 10-15.
http://dx.doi.org/10.1034/j.1399-3054.2003.00086.x
[21] H. Khandelwal and S. S. Sindhu, “Expression of 1-Aminocyclopropane-1-carboxylate Deaminase in Rhizobia Promotes Nodulation and Plant Growth of Clusterbean Cyamopsis tetraganoloba L.),” Research Journal of Microbiology, Vol. 7, No. 3, 2012, pp. 158-170.
http://dx.doi.org/10.3923/jm.2012.158.170
[22] M. Dworkin and J. W. Foster, “Experiments with Some Microorganisms Wich Utilize Ethane and Hydrogen,” Journal of Bacteriology, Vol. 75, No. 5, 1958, pp. 592-601.
[23] A. A. Belimov, N. Hontzeas, V. I. Safronova, S. V. Demchinskaya, G. Piluzza, S. Bullitta and B. R. Glick, “Cadmium-Tolerant Plant Growth-Promoting Bacteria Associated with the Roots of Indian Mustard (Brassica juncea L. Czern.),” Soil Biology & Biochemistry, Vol. 37, No. 2, 2005, pp. 241-250.
http://dx.doi.org/10.1016/j.soilbio.2004.07.033
[24] A. Khalid, M. Arshad and Z. A. Zahir, “Screening Plant Growth-Promoting Rhizobacteria for Improving Growth and Yield of Wheat,” Journal of Applied Microbiology, Vol. 96, No. 3, 2004, pp. 473-480.
http://dx.doi.org/10.1046/j.1365-2672.2003.02161.x
[25] B. R. Glick, D. M. Karaturovic and P. C. Newell, “A Novel Procedure for Rapid Isolation of Plant Growth Promoting Pseudomonads,” Canadian Journal of Microbiology, Vol. 41, No. 6, 1995, pp. 533-536.
http://dx.doi.org/10.1139/m95-070
[26] M. L. Evans, H. Ishikawa and M. A. Estelle, “Responses of Arabidopsis Roots to Auxin Studied with High Temporal Resolution: Comparison of Wild Type and AuxinResponse Mutants,” Planta, Vol. 194, No. 2, 1994, pp. 215-222. http://dx.doi.org/10.1007/BF01101680
[27] A. Harari, J. Kige and Y. Okon, “Involvement of IAA in the Interaction between Azospirillum brasilense and Panicum miliaceum Roots,” Plant and Soil, Vol. 110, No. 2, 1988, pp. 275-282.
http://dx.doi.org/10.1007/BF02226808
[28] E. L. Selvadurai, A. E. Brown and J. T. G. Hamilton, “Production of Indole-3-Acetic Acid Analogues by Strains of Bacillus cereus in Relation to Their Influence on Seedling Development,” Soil Biology & Biochemistry, Vol. 23, No. 4, 1991, pp. 401-403.
http://dx.doi.org/10.1016/0038-0717(91)90198-S
[29] J. E. Loper and M. N. Schroth, “Influence of Bacterial Sources of Indole-3-Acetic Acid on Root Elongation of Sugar Beet,” Phytopathology, Vol. 76, No. 4, 1986, pp. 386-389. http://dx.doi.org/10.1094/Phyto-76-386
[30] M. Sawar and R. J. Kremmer, “Enhanced Suppression of Plant Growth through Production of L-Tryptophan Compounds by Deleterious Rhizobacteria,” Plant and Soil, Vol. 172, No. 2, 1995, pp. 261-269.
http://dx.doi.org/10.1007/BF00011328
[31] H. Xie, J. J. Pasternak and B. R. Glick, “Isolation and Characterization of Mutants of the Plant Growth-Promoting Rhizobacterium Pseudomonas putida GR12-2 that Overproduce Indoleacetic Acid,” Current Microbiology, Vol. 32, No. 2, 1996, pp. 67-71.
http://dx.doi.org/10.1007/s002849900012
[32] A. A. Belimov, V. I. Safronova, T. A. Sergeyeva, T. N. Egorova, V. A. Matveyeva, V. E. Tsyganov, A. Y. Borisov, I. A. Tikhonovich, C. Kluge, A. Preisfeld, K. J. Dietz and V. V. Stepanok, “Characterisation of Plant Growth-Promoting Rhizobacteria Isolated from Polluted Soils and Containing 1-Aminocyclopropane-1-carboxylate Deaminase,” Canadian Journal of Microbiology, Vol. 47, No. 7, 2001, pp. 642-652.
http://dx.doi.org/10.1139/w01-062
[33] D. M. Penrose and B. R. Glick, “Levels of 1-Aminocyclopropane-1-carboxylic Acid (ACC) in Exudates and Extracts of Canola Seeds Treated with Plant Growth-Promoting Bacteria,” Canadian Journal of Microbiology, Vol. 47, No. 4, 2001, pp. 368-372.
http://dx.doi.org/10.1139/w01-014
[34] V. P. Grichko and B. R. Glick, “Amelioration of Flooding Stress by ACC Deaminase Containing Plant Growth-Promoting Bacteria,” Plant Physiology and Biochemistry, Vol. 39, No. 1, 2001, pp. 11-17.
http://dx.doi.org/10.1016/S0981-9428(00)01212-2
[35] A. A. Belimov, V. I. Safronova and T. Mimura, “Response of Spring Rape to Inoculation with Plant Growth-Promoting Rhizobacteria Containing 1-Aminocyclopropane-1-carboxylate Deaminase Depends on Nutrient Status of the Plant,” Canadian Journal of Microbiology, Vol. 48, No. 3, 2002, pp. 189-199.
http://dx.doi.org/10.1139/w02-007
[36] Ch. L. Patten and B. R. Glick, “Role of Pseudomonas putida Indoleacetic Acid in Development of the Host Plant Root System,” Applied and Environmental Microbiology, Vol. 68, No. 8, 2002, pp. 3795-3801.
http://dx.doi.org/10.1128/AEM.68.8.3795-3801.2002
[37] J. Li and B. R. Glick, “Transcriptional Regulation of the Enterobacter cloacae UW 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase Gene (acdS),” Canadian Journal of Microbiology, Vol. 47, No. 4, 2001, pp. 359-367. http://dx.doi.org/10.1139/w01-009
[38] M. Beyerler, P. Michaux, C. Keel and D. Haas, “Effect of Enhanced Production of Indole-3-Acetic Acid by the Biological Control Agent Pseudomonas fluorescens CHA0 on Plant Growth,” In: A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Kondo and S. Akino, Eds., Plant growth Promoting Rhizobacteria: Present Status and Future Prospects, OECD, Paris, 1997, pp. 310-312.
[39] M. Zafar-Ul-Hye, Z. A. Zahir, S. M. Shahzad, M. Naveed, M. Arshad and M. Khalid, “Preliminary Screening of Rhizobacteria Containing ACC-Deaminase for Promoting Growth of Lentil Seedlings under Axenic Condition,” Pakistan Journal of Botany, Vol. 39, No. 5, 2007, pp. 1725-1738.
[40] B. Shaharoona, R. Bibi, M. Arshad, Z. A. Zahir and M. Zia-Ul-Hassan, “1 Aminocyclopropane-1-carboxylate (ACC)-Deaminase Rhizobacteria Extenuates ACC-Induced Classical Triple Response in Etiolated Pea Seedlings,” Pakistan Journal of Botany, Vol. 38, No. 5, 2006, pp. 1491-1499.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.