Cell Segmentation and Tracking in Microfluidic Platform

DOI: 10.4236/eng.2013.510B047   PDF   HTML     2,646 Downloads   3,819 Views   Citations


In this research, we have concentrated on trajectory extraction based on image segmentation and data association in order to provide an economic and complete solution for rapid microfluidic cell migration experiments. We applied region scalable active contour model to segment the individual cells and then employed the ellipse fitting technique to process touching cells. Subsequently, we have also introduced a topology based technique to associate the cells between consecutive frames. This scheme achieves satisfactory segmentation and tracking results on the datasets acquired by our microfluidic platform.

Share and Cite:

Ouyang, L. , Wu, J. , Zhang, M. , Lin, F. and Liao, S. (2013) Cell Segmentation and Tracking in Microfluidic Platform. Engineering, 5, 226-232. doi: 10.4236/eng.2013.510B047.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Zimmer, E. Labruyere, V. Meas-Yedid, N. Guillen and J. C. Olivo-Marin, “Segmentation and Tracking of Migrating Cells in Videomicroscopy with Parametric Active Contours: A Tool for Cell-Based Drug Testing,” IEEE Transactions on Medical Imaging, Vol. 21, No. 10, 2002, pp. 1212-1221. http://dx.doi.org/10.1109/TMI.2002.806292
[2] S. Kim, H. J. Kim and N. L. Jeon, “Biological Applications of Microfluidic Gradient Devices,” Integrative Biology, Vol. 2, 2010, pp. 584-603. http://dx.doi.org/10.1039/c0ib00055h
[3] F. Lin, “Chapter 15. A Microfluidics-Based Method for Chemoattractant Gradients,” Methods in Enzymology, Vol. 461, 2009, pp. 333-347. http://dx.doi.org/10.1016/S0076-6879(09)05415-9
[4] F. Lin and E. C. Butcher, “T Cell Chemotaxis in a Simple Microfluidic Device,” Lab on a Chip, Vol. 6, 2006, pp. 1462-1469. http://dx.doi.org/10.1039/b607071j
[5] S. Beucher and C. Lantuejoul, “Use of Watersheds in Contour Detection,” International Workshop on Image Processing: Real-Time Edge and Motion Detection/Estimation, Rennes, 1979.
[6] L. Vincent and P. Soille, “Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 6, 1991, pp. 583-598. http://dx.doi.org/10.1109/34.87344
[7] R. C. Gonzalez and R. E. Woods, “Digital Image Processing,” 2nd Edition, Addison-Wesley Longman Publishing Co., Inc., Boston, 2001.
[8] P. Bonnin, J. B. Talon, J C. Hayot and B. Zavidovique, “A New Edge Point/Region Cooperative Segmentation Deduced from a 3d Scene Reconstruction Application,” SPIE Applications of Digital at Image Processing XII, Vol. 1153, 1990, pp. 579-591. http://dx.doi.org/10.1117/12.962359
[9] P. C. Chen and T. Pavlidis, “Image Segmentation as an Estimation Problem,” Computer Graphics and Image Processing, Vol. 12, No. 2, 1980, pp. 153-172. http://dx.doi.org/10.1016/0146-664X(80)90009-X
[10] A. Tremeau and N. Borel, “A Region Growing and Merging Algorithm to Color Segmentation,” Pattern Recognition, Vol. 30, No. 7, 1997, pp. 1191-1203. http://dx.doi.org/10.1016/S0031-3203(96)00147-1
[11] T. Sandor, D. Metcalf and Y.-J. Kim, “Segmentation of Brain ct Images Using the Concept of Region Growing,” International Journal of Bio-Medical Computing, Vol. 29, No. 2, 1991, pp. 133-147. http://dx.doi.org/10.1016/0020-7101(91)90004-X
[12] R. Adams and L. Bischof, “Seeded Region Growing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 6, 1994, pp. 641-647.
[13] G. B. Coleman and H. C. Andrews, “Image Segmentation by Clustering,” Proceedings of the IEEE, Vol. 67, No. 5, 1979, pp. 773-785. http://dx.doi.org/10.1109/PROC.1979.11327
[14] D. Comaniciu and P. Meer, “Mean Shift Analysis and Applications,” The Proceedings of the Seventh IEEE International Conference on Computer Vision, Vol. 2, 1999, pp. 1197-1203.
[15] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach toward Feature Space Analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 5, 2002, pp. 603-619. http://dx.doi.org/10.1109/34.1000236
[16] A. K. Jain, M. N. Murty and P. J. Flynn, “Data Clustering: A Review,” ACM Computing Surveys, Vol. 31, No. 3, 1999, pp. 264-323. http://dx.doi.org/10.1145/331499.331504
[17] M. Kass, A. Witkin and D. Terzopoulos, “Snakes: Active Contour Models,” International Journal of Computer Vision, Vol. 1, No. 4, 1988, pp. 321-331. http://dx.doi.org/10.1007/BF00133570
[18] V. Caselles, R. Kimmel and G. Sapiro, “Geodesic Active Contours,” 1997.
[19] T. Kanade and K. Li, “Tracking of Migrating and Proliferating Cells in Phase-Contrast Microscopy Imagery for Tissue Engineering,” In: Y. X. Liu, T. Z. Jiang and C. S. Zhang, Eds., Computer Vision for Biomedical Image Applications, Volume 3765 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2005, pp. 24-24.
[20] S. K. Nath, K. Palaniappan and F. Bunyak, “Cell Segmentation Using Coupled Level Sets and Graph-Vertex Coloring,” Medical Image Computing and Computer-Assisted Intervention, Vol. 9, Pt. 1, 2006, pp. 101-108.
[21] K. Li, E. D. Miller, M. Chen, T. Kanade, L. E. Weiss and P. G. Campbell, “Cell Population Tracking and Lineage Construction with Spatiotemporal Context,” Medical Image Analysis, Vol. 12, No. 5, 2008, pp. 546-566. http://dx.doi.org/10.1016/j.media.2008.06.001
[22] K. Li, E. D. Miller, L. E. Weiss, P. G. Campbell and T. Kanade, “Online Tracking of Migrating and proliferating Cells Imaged with Phase-Contrast Microscopy,” Conference on Computer Vision and Pattern Recognition Workshop, 2006, pp. 65-65.
[23] D. Padfield, J. Rittscher, N. Thomas and B. Roysam, “Spatio-Temporal Cell Cycle Phase Analysis Using Level Sets and Fast Marching Methods,” Medical Image Analysis, Vol. 13, No. 1, 2009, pp. 143-155. http://dx.doi.org/10.1016/j.media.2008.06.018
[24] D. B. Reid, “An Algorithm for Tracking Multiple Targets,” IEEE Transactions on Automatic Control, Vol. 24, 1979, pp. 843-854. http://dx.doi.org/10.1109/TAC.1979.1102177
[25] T. Fortmann, Y. Bar-Shalom and M. Scheffe, “Multi-Target Tracking Using Joint Probabilistic Data Association,” 19th IEEE Conference on Decision and Control, 1980, pp. 807-812.
[26] Y. Bar-Shalom, “Multitarget-Multisensor Tracking: Advanced Applications,” Artech House, Norwood, 1990, 391 Pages.
[27] I. J. Cox, “A Review of Statistical Data Association Techniques for Motion Correspondence,” International Journal of Computer Vision, Vol. 10, 1993, pp. 53-66. http://dx.doi.org/10.1007/BF01440847
[28] H. W. Kuhn, “The Hungarian Method for the Assignment Problem,” Naval Research Logistic Quarterly, Vol. 2, 1955, pp. 83-97. http://dx.doi.org/10.1002/nav.3800020109
[29] Y. Bar-Shalom and T. E. Fortmann, “Tracking and Data Association, Volume 179 of Mathematics in Science and Engineering,” Academic Press Professional, Inc., San Diego, 1987.
[30] F. Lin and E. C. Butcher, “T Cell Chemotaxis in a Simple Microfluidic Device,” Lab on a Chip, Vol. 6, 2006, pp. 1462-1469. http://dx.doi.org/10.1039/b607071j
[31] T. F. Chan and L. A. Vese, “Active Contours without Edges,” IEEE Transactions on Image Processing, Vol. 10, No. 2, 2001, pp. 266-277. http://dx.doi.org/10.1109/83.902291
[32] C. M. Li, C.-Y. Kao, J. C Gore and Z. H. Ding, “Minimization of Region-Scalable Fitting Energy for Image Segmentation,” IEEE Transactions on Image Processing, Vol. 17, No. 10, 2008, pp. 1940-1949. http://dx.doi.org/10.1109/TIP.2008.2002304
[33] V. Caselles, F. Catte?, T. Coll and F. Dibos, “A Geometric Model for Active Contours in Image Processing,” Numerische Mathematik, Vol. 66, No. 1, 1993, pp. 1-31. http://dx.doi.org/10.1007/BF01385685
[34] O. Al-Kofahi, R. J. Radke, R. K. Goderie, Q. Shen, S. Temple and B. Roysam, “Automated Cell Lineage Construction: A Rapid Method to Analyze Clonal Development Established with Murine Neural Progenitor Cells,” Cell Cycle, Vol. 5, No. 3, 2006, pp. 327-335. http://dx.doi.org/10.4161/cc.5.3.2426
[35] W. M. Yu, H. K. Lee, S. Hariharan, W. Y. Bu and S. Ahmed, “Level Set Segmentation of Cellular Images Based on Topological Dependence,” In Proceedings of the 4th International Symposium on Advances in Visual Computing, ISVC ’08, pages 540-551, Springer-Verlag, Berlin, 2008.
[36] G. Zhang, D. S. Jayas and N. D. G. White, “Separation of Touching Grain Kernels in an Image by Ellipse Fitting Algorithm,” Biosystems Engineering, Vol. 92, No. 2, 2005, pp. 135-142. http://dx.doi.org/10.1016/j.biosystemseng.2005.06.010
[37] J. Hukkanen, A. Hategan, E. Sabo and I. Tabus, “Segmentation of Cell Nuclei from Histological Images by Ellipse Fitting,” Proceedings of the European Signal Processing Conference, Aalborg, Denmark, 2010, pp. 1219-1223.
[38] A. Fitzgibbon, M. Pilu and R. B. Fisher, “Direct Least Square Fitting of Ellipses,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, No. 5, 1999, pp. 476-480. http://dx.doi.org/10.1109/34.765658
[39] L. L. Zhang, H. K. Xiong, K. Zhang and X. B. Zhou, “Graph Theory Application in Cell Nuleus Segmentation, Tracking and Identification,” Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, 2007, pp. 226-232.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.