Sensory neurons in the spinal cord of nominal female embryos in the marine turtle Lepidochelys olivacea respond to shifts in incubation temperature: implications for temperature dependent sex determination


Gonadal determination in marine turtles depends on incubation temperature. The mechanisms that spark off this process remain unclear. Previously, we proposed that sensory nerves reaching the gonadal primordium in nominal female embryos of Lepidochelys (L) olivacea may sense and signal incubation temperature. These nerves could later trigger ovarian determination by releasing neurotransmitters in a code constructed based on the thermal information (Gutierrez-Ospina et al., Acetylcholinesterase-positive innervation is present at the undifferentiated stages of the sea turtle Lepidochelys olivacea embryo gonads: implications for temperature-dependent sex determination, J. Comp. Neurol. 410 (1999) 90-98). The hypothesis briefly described, however, has been recently refuted under weak theoretical grounds and experimental misinterpretations (see introduction). Here, we present preliminary results that show that nominal female embryos have sensory neurons located in the dorsal horn laminae I and II of the lumbar spinal cord that display increased c-Fos-like immuno-staining after being incubated either at 15°C or 50°C. Because these spinal neurons are the primary central target of dorsal root ganglion neurons that innervate the urogential crest, these observations keep open the possibility that gonadal sensory nerves indeed signal thermal information that could later be used to trigger or instruct ovarian specification in marine turtles.

Share and Cite:

Jiménez-Trejo, F. , Olivos-Cisneros, L. , Mendoza-Torreblanca, J. , Díaz-Cintra, S. , Meléndez-Herrera, E. , Báez-Saldaña, A. , Cortés, P. , Gutiérrez-Ospina, G. and Fuentes-Farías, A. (2011) Sensory neurons in the spinal cord of nominal female embryos in the marine turtle Lepidochelys olivacea respond to shifts in incubation temperature: implications for temperature dependent sex determination. Advances in Bioscience and Biotechnology, 2, 1-7. doi: 10.4236/abb.2011.21001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Merchant-Larios, H. (2001) Temperature sex determination in reptiles: The third strategy. Journal of Reproduction and Development, 47, 245-252. doi:10.1262/jrd.47.245
[2] Merchant-Larios, H., Villalpando-Fierro, I. and Centeno-Urquiza, B. (1989) Gonadal morphogenesis under controlled temperature in the sea turtle Lepidochelys olivacea. Herpetological Monographs, 3, 43-61. doi:10.2307/1466985
[3] Merchant-Larios, H., Ruíz-Ramírez, S., Moreno-Mendoza, N. and Marmolejo-Valencia, A. (1997) Correlation among thermosensitive period, estradiol response, and gonad differentiation in the sea turtle Lepidochelys olivacea. General and Comparative Endocrinology, 107, 373-385. doi:10.1006/gcen.1997.6946
[4] Jeyasuria, P. and Place, A.R. (1998) Correlation among thermosensitive period, estradiol response, and gonad differentiation in the sea turtle Lepidochelys olivacea aromatase (CYP19). Journal of Experimental Zoology, 281, 428-449. doi:10.1002/(SICI)1097-010X(19980801)281:5<428::AID-JEZ8>3.3.CO;2-4
[5] Bergeron, J.M., Willingham, E., Osborn, C.T., Rhen, T. and Crews, D. (1999) Developmental synergism of steroidal estrogens in sex determination. Enviromental Health Perspectives, 107, 93-97. doi:10.1289/ehp.9910793
[6] Pieau, C. and Dorizzi, M. (2004) Oestrogens and temperature-dependent sex determination in reptiles: all is in the gonads. Journal of Endocrinology, 181, 367-377. doi:10.1677/joe.0.1810367
[7] Ramsey, M. and Crews, D. (2008) Steroid signaling and temperature-dependent sex determination-reviewing the evidence for early action of estrogen during ovarian determination in turtles. Seminars in Cell & Developmental Biology, 20, 283-292. doi:10.1016/j.semcdb.2008.10.004
[8] Moreno-Mendoza, N., Harley, V.R. and Merchant-Larios, H. (2001) Temperature regulates SOX9 expression in cultured gonads of Lepidochelys olivacea, a species with temperature sex determination. Developmental Biology, 229, 319-326. doi:10.1006/dbio.2000.9952
[9] Sarre, S.D., Georges, A. and Quinn, A. (2004) The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. BioEssays, 26, 639-645. doi:10.1002/bies.20050
[10] Shoemaker, C.M. and Crews, D. (2009) Analyzing the coordinated gene network underlying temperature-de- pendent sex determination in reptiles. Seminars in Cell & Developmental Biology, 20, 293-303. doi:10.1016/j.semcdb.2008.10.010
[11] Torres-Maldonado, L.C. and Merchant-Larios, H. (2006) Aspectos moleculares de la determinacion del sexo en tortugas. Ciencia Ergo Sum, 13, 176-182.
[12] Lance, V.A. (2009) Is regulation of aromatase expression in reptiles the key to understanding temperature-dependent sex determination? Journal of Experimental Zoology, 311, 314-322. doi:10.1002/jez.465
[13] Lundquist A., Lowkvist B., Linden M. and Heby 0. (1983) Polyamines in early embryonic development: their relationship to nuclear multiplication rate, cell cycle traverse, and nucleolar formation in a dipteran egg. Developmental Biology, 95, 253-259. doi:10.1016/0012-1606(83)90026-X
[14] Manen, C.A. and Russell, D.H. (1973) Early cyclical changes in polyamine synthesis during sea-urchin development. Journal of Embryology & Experimental Morphology, 30, 243-256.
[15] Neyfakh, A.A., Yarygin, K.N. and Gorgolyuk, S.I. (1983) Ornithine decarboxylase activity in embryos depends on temperature of development rather than on the stage of development. Biochemistry Journal, 216, 597-604.
[16] Penick, N.D., Paladino, V.F., Steyermurk, C.A. and Spotila, R.J. (1996) Thermal dependence of tissue metabolism in the green turtle, Chelonia mydas. Comparative Biochemistry and Physiology, 113, 293-296. doi:10.1016/0300-9629(95)02068-3
[17] Seebacher, F. and Franklin, C.E. (2005) Physiological mechanisms of thermoregulation in reptiles: a review. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 175, 533-541. doi:10.1007/s00360-005-0007-1
[18] Gutiérrez-Ospina, G., Jiménez-Trejo, F.J., Favila, R., Moreno-Mendoza, N., Granados-Rojas, L., Barrios, F.A. and Merchant-Larios, H. (1999) Acetylcholinesterase- positive innervation is present at the undifferentiated stages of the sea turtle Lepidochelys olivacea embryo gonads: Implications for temperature-dependent sex determination. The Journal of Comparative Neurology, 410, 90-98. doi:10.1002/(SICI)1096-9861(19990719)410:1<90::AID-CNE8>3.0.CO;2-7
[19] Maggi, C.A. (1991) The pharmacology of the efferent function of sensory nerves. Journal of Autonomic Pharmacology, 11, 173-208. doi:10.1111/j.1474-8673.1991.tb00317.x
[20] Martínez-Martínez, E., Toscano-Márquez, B. and Gutiérrez-Ospina, G. (2010) Long-term effects of neonatal capsaicin treatment on intraepidermal nerve fibers and keratinocite proliferation in rat glabrous skin. The Anatomical Record Journal, in press.
[21] Merchant-Larios H. and Villalpando I. (1990) Effect of temperature on gonadal sex differentiation in the sea turtle Lepidochelys olivacea: An organ culture study. Journal of Experimental Zoology, 254, 327-331. doi:10.1002/jez.1402540312
[22] Amanuma, A. and Yamada, K. (1979) Innervation of the ovarian interstitial cell of the chick embryo. Experientia, 35, 403-406. doi:10.1007/BF01964378
[23] ávila, R.E., Samar, M.E. and Fabro, S.P. (1991) Interstitial cells of the ovaries of the chick embryo: Ultrastructural aspects of their innervations. Revista de la Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, República Argentina, 49, 13-17.
[24] ávila, R.E., Samar, M.E., Ferraris, R. and Bonomi, L. (2001) Ultrastructural behavior of interstitial cells innervation during differentiation of the chick embryo ovary cultured with 17-beta-estradiol. Revista de la Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, República Argentina, 58, 49-55.
[25] ávila R.E., Samar M.E., Ferraris R. and Centurion C., (2002) Subcellular aspects of interstitial cell innervation in chick embryo ovary cultured with LH or hCG. Revista de la Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, República Argentina, 59, 63-69.
[26] Edwards R.A., Lutz P.L. and Baden D.G. (1989) Relationship between energy expenditure and ion channel density in the turtle and rat brain,” American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, I, 257, 1354-1358.
[27] Milton, S.L. (1994) The physiology of hypoxia and anoxia tolerance in three species of turtle: The loggerhead sea turtle (Caretta caretta), green sea turtle (Chelonia mydas) and freshwater Trachemys scripta. Ph. D. dissertation, University of Miami.
[28] Greenway S.C. and Story K.B., (1999) Mitogen-activated protein kinases and anoxia tolerance in turtles. Journal of Experimental Zoology, 287, 477-484. doi:10.1002/1097-010X(20001201)287:7<477::AID-JEZ3>3.0.CO;2-4
[29] Pockett, S. and MacDonald, J.A. (1986) Temperature dependence of neurotransmitter release in the antarctic fish Pagolthenia borchgrevinki. Experientia, 42, 414-415. doi:10.1007/BF02118635
[30] Yang X.F., Ouyang Y., Kennedy B.R. and Rothman S.M. (2005) Cooling blocks rat hippocampal neurotransmission by a presynaptic mechanism: Observations using 2-photon microscopy. The Journal of Physiology, 567, 215-224. doi:10.1113/jphysiol.2005.088948
[31] Baillien, M., and Balthazart, J.A. (1997) Direct dopaminergic control of aromatase activity in the quail preoptic area. The Journal of Steroid Biochemistry and Molecular Biology, 63, 99-113. doi:10.1016/S0960-0760(97)00080-0
[32] Absil P., Baillien M., Ball F.G., Panzica G.C. and Balthazart J. (2001) The control of preoptic aromatase activity by afferent inputs in japanese quail. Brain Research Reviews, 37, 38-58. doi:10.1016/S0165-0173(01)00122-9
[33] Patapoutian, A., Peier, M.A., Story, M.G. and Viswanath, V. (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nature Reviews, Neuroscience, 4, 529-539. doi:10.1038/nrn1141
[34] Mrosovsky, N. (1994) Sex ratios of sea turtles. The Journal of Experimental Zoology, 270, 16-27. doi:10.1002/jez.1402700104
[35] Coles, C.W. (1999) Aspects of the biology of sea turtles in the mid Atlantic bight. PhD. Dissertation. Faculty of the School of Marine Science, William and Mary College, Virginia.
[36] Lourens, A., Van den Brand, H., Heetkamp, M.J.W., Meijerhof, R. and Kemp, B. (2006) Metabolic responses of chick embryos to short-term temperature fluctuations. Poultry Sciences, 85, 1081-1086.
[37] Yaqub, A., Guimaraes, M. and Eldred, D.W. (1995) Neurotransmitter modulation of Fos and Jun-like proteins in the turtle retina. The Journal of Comparative Neurology, 354, 481-500. doi:10.1002/cne.903540402
[38] Cobellis, G., Meccariello, R., Minucci, S., Palmiero, C., Pierantoni, R. and Fasano, S. (2003) Cytoplasmic Versus Nuclear localization of fos-related proteins in the frog, Rana esculenta, testis: In Vivo and direct In Vitro effect of a gonadotropin-releasing hormone agonist1. Biology of Reproduction, 68, 954-960. doi:10.1095/biolreprod.102.008938
[39] Hafezi, F., Steinbach, J.P., Marti, A., Munz, K., Wang, Z.-Q., Wagner, E.F., Aguzzi, A. and Remé, C.E. (1997) The absence of c-fos prevents light-induced apoptotic cell death of photoreceptors in retinal degeneration in vivo. Nature Medicine, 3, 346-349. doi:10.1038/nm0397-346
[40] Schreiber, M., Baumann, B., Cotton, M., Angel, P. and Wagner, E.F. (1995) Fos is an essential component of the mammalian UV response. The EMBO Journal, 14, 5338- 5349.
[41] Cobellis, G., Meccariello, R., Fienga, G., Pierantoni, R. and Fasano, S. ( 2002) Cytoplasmic and nuclear fos protein forms regulate resumption of spermatogenesis in the frog, Rana esculenta. Endocrinology, 143, 163-170. doi:10.1210/en.143.1.163
[42] Hobert, O., Alberti, T.D., Liu, Y. and Ruvkun, G. (1998) Control of neural development and function in a thermoregulatory network by the LIM homeobox gene lin-11. The Journal of Neuroscience, 18, 2084-2096.
[43] Bosch, T.J., Madam, S. and Roberts, B.L. (1995) A polyclonal antibody against mammalian FOS can be used as a cytoplasmic neuronal activity marker in a teleost fish. Journal of Neurosciences Methods, 58, 173-179. doi:10.1016/0165-0270(94)00174-F
[44] Bosch, T.J., Madam, S. and Roberts, B.L. (2001) Fos-like immunohistochemical identification of neurons active during the startle response of the Rainbow Trout. The Journal of Comparative Neurology, 439, 306-314.
[45] Roux, P., Blanchard, J.M., Pernandez, A., Lamb, N., Jeanteur, P. and Piechaczyk, M. (1990) Nuclear localization of c-Fos, but not v-Fos proteins, is controlled by extracellular signals. Cell, 63, 341-351.
[46] Salierno, J.D., Snyderb, N.S., Murphyc, A.Z., Polid, M. Halle, S., Badenf, D. and Kanea, S. (2006) Harmful algal bloom toxins alter c-Fos protein expression in the brain of killifish, Fundulus heteroclitus. Aquatic Toxicology, 78, 350-357. doi:10.1016/j.aquatox.2006.04.010
[47] Bussolino, D.F., Guido, M.E., Gil, G.A., Borioli, G.A., Renner, M.L, Grabois, V.R, Conde, C.B. and Caputto, B.L. (2001) c-Fos associates with the endoplasmic reticulum and activates phospholipid metabolism. The FASEB Journal, 15, 556-558.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.