An Efficient Noise Generator for Validation of Channels Equalizers


This paper develops an efficient pseudo-random number generator for validation of digital communication channels and secure disc. Drives. Simulation results validates the effectiveness of the random number generator.

Share and Cite:

Panda, N. , Panigrahi, S. and Padhy, S. (2011) An Efficient Noise Generator for Validation of Channels Equalizers. Journal of Signal and Information Processing, 2, 1-10. doi: 10.4236/jsip.2011.21001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Hard Disk Drives, /guide 2000/ref/hdd/index.html
[2] D. Davis, R. Ihaka and P. R. Fernstermacher, “CryptoGraphic Randomness from Air Turbulence in Disk Drives,” Proceedings of the 14th Annual International Crytology Conference, 1994.
[3] L. Hars, “Randomness of Timing Variations in Disk Drives,” Manuscript, 2007.
[4] E. Schreck and W. Ertel, “Disk Drive Generates High Speed Real Random Numbers,” MicrosystemTechnologies, Vol. 11, No. 8-10, 2005, pp. 616-622. doi:10.1007/s00542 -005-0532-6
[5] R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, “A PRML System for Digital Magnetic Recording,” IEEE Journal on Selected Areas in Communications, Vol. 10, No. 1, 1992, pp. 38-56. doi:10.1109 /49.124468
[6] B. Vasic, et al., “Coding and Signal Pro- cessing for Magnetic Recording Systems,” CRC Press, Boca Raton, Fla, 2005.
[7] C.-H. Wei and A. Chung, “Adaptive Signal Processing,”
[8] Y.-S. Tang, “Noise Autocorrelation in Magnetic Recording Systems,” IEEE Transactions on Magnetics, Vol. 21, No. 5, 1985, pp. 1389-1391. doi:10.1109/TMAG. 1985.1064052
[9] J. R. Hoinville, R. S. Indeck and M. W. Muller, “Spatial Noise Phenomena of Longitudinal Magnetic Recording Media,” IEEE Transactions on Magnetics, Vol. 28, No. 6, 1992, pp. 3398-3406. doi:10.1109/20.179817
[10] R. S. Indeck, et al., “Noise Characterization of PerpenDicular Media,” Journal of the Magnetics Society of Japan, 1991.
[11] R. S. Indeck, et al., “Effect of Trackwidth and Linear Spacing on Stability and Noise in Longitudinal and Perpendicular Recording,” Journal of the Magnetics Society of Japan, 1997.
[12] R. Behrens and A. Armstrong, “An Advanced Read/Write Channel for Magnetic Disk Storage,” Proceedings of the 26th IEEE Asilomar Conference on Signals, Systems & Computers, October 1992, pp. 956-960.
[13] H. K. Thapar and A. M. Patel, “A Class of Partial Response Systems for Increasing Storage Density in Magnetic Recording,” IEEE Transactions on Magnetics, Vol. 23, No. 5, 1987, pp. 3666-3668. doi:10.1109/TMAG. 1987.1065230
[14] W. L. Abbott, J. M. Cioffi and H. K. Thapar, “Channel Equalization Methods for Magnetic Storage,” Proceedings of the IEEE International Conference on Communications, 1989, pp. 1618-1622,.
[15] W. L. Abbott, J. M. Cioffi and H. K. Thapar, “Performance of Digital Magnetic Recording with Equalization and Offtrack Interference,” IEEE Transactions on Magnetics, Vol. 27, No. 1, 1991, pp. 705-716. doi:10.1109/20.101120
[16] W. W. L. Ng, E. H. Lim and W. Xie, “Method and Apparatus for Generating Random Numbers based on Filter Coefficients of an Adaptive Filter,” US patent No. 6931425.
[17] J. von Neumann, “Various Techniques used in Connection with Random Digits,” von Neumann’s Collected Works, Vol. 5, Pergamon Press, Oxford, 1963.
[18] M. Blum, “Independent Unbiased Coin Flips from a Correlated Biased Source: a Finite StateMarkov Chain,” Proceedings of the 25th Annual Symposium on Foundations of Computer Science, 1984, pp. 425-433,.
[19] M. Blum and S. Micali, “How to Generate Cryptographically Strong Sequences of Pseudo-random Bits,” SIAM Journal on Computing, Vol. 13, No. 4, 1984, pp. 850-864. doi:10.1137/0213053
[20] B. Chor and O. Goldreich, “Unbiased Bits Fromsource of Weak Randomness and Probabilistic Communication ComPlexity,” Proceedings of the 26th Annual Symposium on Foundations of Computer Science, 1985, pp. 429-442.
[21] L. Hars and G. Petruska, “Pseudorandom Recursions: Small and Fast Pseudorandom Number Generators for Embedded Applications,” EURASIP Journal of Embedded Systems, Vol. 2007, 2007, pp. .
[22] D. E. Knuth, “Seminumerical Algorithms, The Art of Computer Programming,” Addison-Wessley, 1997.
[23] G. Marsaglia, “A Current View of Random Number Generators,” Computer Science and Statistics: The Interface, pp. 3-10, Elsevier Science, Amsterdam, 1985.
[24] G. Marsaglia and A. Zaman, “Monkey Tests for Random number Generators,” Computers and Mathematics with Applications, Vol. 26, No. 9, 1993, pp. 1-10. doi:10.1016 /0898-1221(93)90001-C
[25] U. M. Maurer, “A Universal Statistical Test for Random Bit Generators,” Journal of Cryptology, Vol. 5, No. 2, 1992, pp. 89- 105. doi:10.1007/BF00193563
[26] NIST Special Publication 800-22, “A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications,” August 2008, http://csrc.nist. gov/publications/nistpubs/800-22-rev1/SP800-22rev1.pdf
[27] T. Ritter, “Randomness Tests: A Literature Survey,” 1996,
[28] Intel Platform Security Division, The Intel random number generator, 1999.
[29] B. Jun and P. Kocher, The Intel Random Number Generator (white paper), 1999, http://www.securitytechnet. com/rsource/crypto/algorithm/random/criwp.pdf
[30] J. S. Coron and D. Naccache, “An Accurate Evaluation of Maurer’s Universal Test,” Proceedings of the ACM Symposium on Applied Computing (SAC’98), 1998.
[31] Digital Signature Standard (DSS), FIPS PUB 186-2, Federal Information Processing Standards Publication, U. S. Department of Commerce/National Institute of Standards and Technology, January 2000.
[32] E. Barker and J. Kelsey, “Recommendation for Random Number Generation Using Deterministic Random Bit Generators,” National Institute of Standards and Technology Special Publication, 2006, pp. 800-90.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.