Atomistic Simulation of Undissociated 60° ; Basal Dislocation in Wurtzite GaN.

DOI: 10.4236/mnsms.2013.34B003   PDF   HTML     2,986 Downloads   4,793 Views   Citations


We have carried out computer atomistic simulations, based on an efficient density functional based tight binding method, to investigate the core configurations of the 60°basal dislocation in GaN wurtzite. Our energetic calculations, on the undissociated dislocation, demonstrate that the glide configuration with N polarity is the most energetically favorable over both the glide and the shuffle sets.

Share and Cite:

I. Belabbas, J. Chen, P. Komninou and G. Nouet, "Atomistic Simulation of Undissociated 60° ; Basal Dislocation in Wurtzite GaN.," Modeling and Numerical Simulation of Material Science, Vol. 3 No. 4B, 2013, pp. 11-16. doi: 10.4236/mnsms.2013.34B003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Strite, M. E. Lin and H. Morkoç, “Progress and Prospects for GaN and the III-V Nitride Semiconducteors,” Thin Solid Films, Vol. 231, 1992, pp.197-210. doi:10.1016/0040-6090(93)90713-Y
[2] P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allegre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean and J. Massies, “High Internal Electric Field in a Graded-width InGaN/GaN Quantum Well: Accurate Determination by Time-resolved Photoluminescence Spectroscopy,” Applied Physics Letters, Vol. 78, 2001, pp. 1252-1254.
[3] B. A. Haskel, F. Wu, S. Matsuda, M. D. Craven, P. T. Fini, S. P. DenBaars, J. S. Speck and S. Nakamura, “Structural and Morphological Characteristics of Planar A-plane Gallium Nitride Grown by Hydride Vapor Phase Epitaxy,” Applied Physics Letters, Vol. 83, 2003, pp. 1554-1556. doi:10.1063/1.1604174
[4] I. Belabbas, P. Ruterana, J. Chen and G. Nouet, “The Atomic and Electronic Structure of Ga-based Nitride Semiconductors,” Philosopical Magazine, Vol. 86, 2006, pp. 2241-2269. doi:10.1080/14786430600651996
[5] Ph. Komninou, J. Kioseoglou, G. P. Dimitrakopulos, Th. Kehagias and Th. Karakostas, “Partial Dislocations in Wurtzite GaN,” Physica Status Solidi (a), Vol. 202, 2005, pp. 2888-2899. doi:10.1002/pssa.200521263
[6] I. Belabbas, J. Chen and G. Nouet, “A New Atomistic Model for the Threading Screw Dislocation Core in Wurtzite GaN,” Computational Materials Science, Vol. 51, 2011, pp. 206-216. doi:10.1016/j.commatsci.2011.07.051
[7] I. Belabbas, A. Béré, J. Chen, S. Petit, M. A. Belkhir, P. Ruterana and G. Nouet, “Atomistic Modeling of the (a+c)-Mixed Dislocation Core in Wurtzite GaN,” Physical Review B, Vol. 75, 2007, pp. 115201-115211. doi:10.1103/PhysRevB.75.115201
[8] I. Belabbas, M. A. Belkhir, Y. H. Lee, A. Béré, P. Ruterana, J. Chen and G. Nouet, “Local Electronic Structure of Threading Screw Dislocation in GaN Wurtzite,” Computational Materials Science, Vol. 37, 2006, pp. 410-416. doi:10.1016/j.commatsci.2005.11.002
[9] I. Belabbas, G. P. Dimitrakopulos, J. Kioseoglou, A. Béré, J. Chen, Ph. Komninou, P. Ruterana and G. Nouet, “Energetics of the 30° Shockley Partial Dislocation in Wurtzite GaN,” Superlattices and Microstructures, Vol. 40, 2006, pp. 458-463. doi:10.1016/j.spmi.2006.09.013
[10] I. Belabbas, J. Chen, M. A. Belkhir, P. Ruterana and G. Nouet, “New Core Configurations of the C-edge Dislocation in Wurtzite GaN,” Physica Status Solidi (c), Vol. 3, 2006, pp. 1733-1737.
[11] I. Belabbas, J. Chen, M. A. Belkhir, P. Ruterana and G. Nouet, “Abinitio Tight-binding Study of the Core of the Core Structures of the C-edge Dislocation in Wurtzite GaN,” Physica Status Solidi (a), Vol. 203, 2006, pp. 2167-2171. doi:10.1002/pssa.200566003
[12] I. Belabbas, G. Nouet and Ph. Komninou, “Atomic Core Configurations of the A-screw Basal Dislocation in wurtzite GaN,” Journal of Crystal Growth, Vol. 300, 2007, pp. 212-216. doi:10.1016/j.jcrysgro.2006.11.022
[13] A. T. Blumenau, J. Elsner, R. Jones, M. I. Heggie, S. Oberg, Th. Frauenheim and PR. Briddon, “Dislocations in Hexagonal and Cubic GaN,” Journal of Physics: Condensed Matter, Vol. 12, 2000, pp. 10223-10233. doi:10.1088/0953-8984/12/49/322
[14] M. Albrecht, H. P. Strunk, J. L. Weyher, I. Grzegory, S. Porowski and T. Wosinski, “Carrier Recomnination at Single Dislocation in GaN Measured by Cathodoluminescence in a Transmission Electron Microscope,” Journal of Applied Physics, Vol. 92, 2002, pp. 2000-2005. doi:10.1063/1.1490618
[15] T. Niermann, M. Kocan, M. Roever, D. Mai, J. Malindretos, A. Rizzi and M. Seibt, “High Resolution Imaging of Extended Defects in GaN Using Wave Function Reconstruction,” Physica Status Solidi (a), Vol. 4, 2007, pp. 3010-3014. doi:10.1002/pssc.200675451
[16] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai and G. Seifert, “Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties,” Physical Review B, Vol. 58, 1998, pp. 7260-7268. doi:10.1103/PhysRevB.58.7260
[17] A. Béré and A. Serra, “Atomic Structure of Dislocation Cores in GaN,” Physical Review B, Vol. 65, 2002, pp. 205323-205332. doi:10.1103/PhysRevB.65.205323
[18] J. P. Hirth and J. Lothe, “Theory of Dislocations,” Wiley, New York, 1982.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.