Biological Template Based on ent-Kaurane Diterpenoid Glycosides for the Synthesis of Inorganic Porous Materials


Recent studies on the preparation of porous nano-materials revealed that the use of kaurane diterpenoids molecules from steviol as biological template favors the obtaining of metallic oxides with tubular morphology as nanorods or nanofibers. In this sense, the present contribution shows an analysis in order to understand how these glycosides of kaurane diterpenoids control the nucleation and growth of inorganic materials favoring the obtaining of these morphologies. For this purpose, it was necessary to carry out studies of the leaf aqueous extract of Stevia rebaudiana by HRTEM, FTIR and 1H-NMR.

Share and Cite:

Á. Sifontes, M. Rodriguez, D. Freire, W. Rondón, L. Llovera, E. Cañizales, F. Méndez, A. Monaco and Y. Díaz, "Biological Template Based on ent-Kaurane Diterpenoid Glycosides for the Synthesis of Inorganic Porous Materials," Advances in Chemical Engineering and Science, Vol. 3 No. 4, 2013, pp. 278-285. doi: 10.4236/aces.2013.34035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. Kataev, R. N. Khaybullin, R. R. Sharipova and I. Y. Strobykina, “ent-Kaurane Diterpenoids and Glycosides: Isolation, Properties, and Chemical Transformations,” Review Journal of Chemistry, Vol. 1, No. 2, 2011, pp. 93-160.
[2] P. Garcia, A. De Oliveira and R. Batista, “Occurrence, Biological Activities and Synthesis of Kaurane Diterpenes and Their Glycosides,” Molecules, Vol. 12, No. 3, 2007, pp. 455-483.
[3] V. S. Prakash Chaturvedula, M. Upreti and I. Prakash, “Diterpene Glycosides from Stevia rebaudiana,” Molecules, Vol. 16, No. 5, 2011, pp. 3552-3562.
[4] M. Rodriguez, á. B. Sifontes, F. J. Méndez, E. Canizales, A. Mónaco, M. Tosta and J. L. Brito, “Synthesis and Characterization of Anatase TiO2 Nanofibers Using Stevia rebaudiana Leaf Aqueous Extract,” In: A. Gayathri, Ed., Recent Research Developments in Material Sciences, Research Signpost, Kerala, 2013, pp. 45-58.
[5] P. Nishiyama, M. Alvarez and L. G. E. Vieira, “Quantitative Analysis of Stevioside in the Leaves of Stevia rebaudiana by Near Infrared Reflectance Spectroscopy,” Journal of the Science of Food and Agriculture, Vol. 59, No. 3, 1992, pp. 277-281.
[6] V. A. Alfonsov, O. V. Andreeva, G. A. Bakaleinik, D. V. Beskrovnyi, A. T. Gubaidullin, V. E. Kataev, G. I. Kovylyaeva, A. I. Konovalov, M. G. Korochkina, S. K. Latypov, I. A. Litvinov, R. Z. Musin and I. Y. Strobykina, “Chemistry and Structure of Diterpene Compounds of the Kaurane Series: VI. Isosteviol Esters,” Russian Journal of General Chemistry, Vol. 73, No. 7, 2003, pp. 1119-1129.
[7] M. Rodríguez, á. B. Sifontes, F. J. Mendez, Y. Diaz, E. Canizales and J. L. Brito, “Template Synthesis and Characterization of Mesoporous γ-Al2O3 Hollow Nanorods Using Stevia rebaudiana Leaf Aqueous Extract,” Ceramics International, Vol. 39, No. 4, 2013, pp. 4499-4506.
[8] V. A. Alfonsov, V. E. Kataev, O. V. Andreeva, D. V. Beskrovniy, G. I. Kovyljaeva, G. A. Bakaleynik, I. Y. Strobykina, I. A. Litvinov and A. I. Konovalov, “The Reception Activity of Isosteviol Isolated from the Plant Stevia rebaudiana Bertoni,” Molecular Design and Synthesis of Supramolecular Architectures, Kazan, 27-31 August, 2002, p. 54.
[9] D. Beskrovnyy, A. Gubaidullin and I. Litvinov, “Crystal Structure of Isosteviol and Its Derivatives,” XX IUCr Congress, Florence, 23-31 August 2005, p. C283.
[10] A. T. Gubaidullin, V. A. Mamedov, I. A. Litvinov, H. Ye and S. Tsuboi, “Synthesis and Comparative Analysis of Molecular and Supramolecular Structures of 4,8-Disubstituted 1,5-Dichloro-2,6-dioxotricyclo[]octanes,” Monatshefte für Chemie, Vol. 134, No. 9, 2003, pp. 1229-1240.
[11] G. Wanka, H. Hoffmann and W. Ulbricht, “Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions,” Macromolecules, Vol. 27, No. 15, 1994, pp. 4145-4159.
[12] V. S. P. Chaturvedula, “IR Spectral Analysis of Diterpene Glycosides Isolated from Stevia rebaudiana,” Food and Nutrition Sciences, Vol. 03, No. 10, 2012, pp. 1467-1471.
[13] B. K. Davison, “Organic Aluminium Compounds,” US Patent No. 3184490, 1965.
[14] R. M. Silverstein, F. X. Webster and D. J. Kiemle, “Spectrometric Identification of Organic Compounds,” 7th Edition, John Wiley & Sons, 2005.
[15] B.-J. Ma, C.-N. Wen, Y. Gao, F.-C. Ren, F. Wang and J.-K. Liu, “ent-Kaurane Diterpenoids from the Plant We-delia trilobata,” Natural Products and Bioprospecting, Vol. 3, No. 3, 2013, pp. 107-111.
[16] L. Harinantenaina, R. Kasai and K. Yamasaki, “ent-Kaurane Diterpenoid Glycosides from a Malagasy endemic Plant, Cussonia vantsilana,” Phytochemistry, Vol. 61, No. 4, 2002, pp. 367-372.
[17] S. Pereira, S. Taleb-Contini, J. Coppede, P. Pereira, B. Bertoni, S. Franca and A. M. Pereira, “An ent-Kaurane-Type Diterpene in Croton antisyphiliticus Mart,” Molecules, Vol. 17, No. 8, 2012, pp. 8851-8858.
[18] K. H. Kim, S. U. Choi and K. R. Lee, “Diterpene Glycosides from the Seeds of Pharbitis nil,” Journal of Natural Products, Vol. 72, No. 6, 2009, pp. 1121-1127.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.