A Slightly Modified Expression of the Polar Surface Area Applied to an Olfactory Study

DOI: 10.4236/ojpc.2013.34018   PDF   HTML     5,574 Downloads   7,779 Views   Citations


The polar surface area of a molecule is currently defined as the surface sum over all polar atoms, primarily oxygen and nitrogen, also including their attached hydrogens (named PSA1 in the present study). Some authors also include sulfur and phosphor (PSA3). The slight modification suggested here is based on the fact that it is difficult to consider, on a theoretical point of view, hexavalent S and pentavalents N and P as polar atoms. Indeed, in these cases, all their peripheral electrons are involved in bondings. We propose to define PSA2 using the initial definition extended to O, S, N, P, with the exception of hexavalent S and pentavalents N and P. In order to test this hypothesis, the three expressions PSA1, PSA2 and PSA3 have been applied in a QSAR to a physiological phenomenon called comfort olfactory perceived intensity, for the human responses to 186 odorants (QSAR stands for Quantitative Structure Activity Relationship). The PSA2 expression has been selected as the more suitable, associated with two other molecular properties (molar refraction and Van der Waals molecular volume).

Share and Cite:

P. Laffort, "A Slightly Modified Expression of the Polar Surface Area Applied to an Olfactory Study," Open Journal of Physical Chemistry, Vol. 3 No. 4, 2013, pp. 150-156. doi: 10.4236/ojpc.2013.34018.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. Palm, K. Luthman, A. L. Ungell, G. Strandlund and P. Artursson, “Correlation of Drug Absorption with Molecule Surface Properties,” Journal of Pharmaceutical Sciences, Vol. 85, No. 1, 1996, pp. 32-39. http://dx.doi.org/10.1021/js950285r
[2] K. Palm, P. Stenberg, K. Luthman and P. Artursson, “Polar Molecular Surface Properties Predict the Intestinal Absorption of Drugs in Humans,” Pharmaceutical Research, Vol. 14, No. 5, 1997, pp. 568-571. http://dx.doi.org/10.1023/A:1012188625088
[3] P. Laffort, “Solvation Parameters. Part 5: Physicochemical Interpretation of Experimental Solvent Values for Stationary Phases of Gas-Liquid Chromatography,” Journal of Chromatography A, Vol. 1218, No. 26, 2011, pp. 4025-4033. http://dx.doi.org/10.1016/j.chroma.2011.04.068
[4] P. Ertl, “Polar Surface Area,” In: R. Mannhold, Ed., Molecular Drug Properties, Wiley-VCH, Heidelberg, 2007, pp. 111-126. http://dx.doi.org/10.1002/9783527621286.ch5
[5] M. Muehlbacher, G. M. Spitzer, K. R. Liedl and J. Kornhuber, “Qualitative Prediction of Blood-Brain Barrier Permeability on a Large and Refined Dataset,” Journal of Computer-Aided Molecular Design, Vol. 25, No. 12, 2011, pp. 1095-1106. http://dx.doi.org/10.1007/s10822-011-9478-1
[6] P. Laffort and A. Dravnieks, “An Approach to a Physico-Chemical Model of Olfactory Stimulation in Vertebrates by Single Compounds,” Journal of Theoretical Biology, Vol. 38, No. 2, 1973, pp. 335-345. http://dx.doi.org/10.1016/0022-5193(73)90178-1
[7] F. Patte, M. Etcheto and P. Marfaing, “Laffort Electroantennogram Stimulus-Response Curves for 59 Odourants in the Honey-Bee Apis mellifica,” Journal of Insect Physiology, Vol. 35, No. 9, 1989, pp. 667-675. http://dx.doi.org/10.1016/0022-1910(89)90086-3
[8] P. Marfaing, J. Rouault and P. Laffort, “Effect of the Concentration and Nature of Olfactory Stimuli on the Proboscis Extension of Conditioned Honey Bees Apis mellifica Ligustica,” Journal of Insect Physiology, Vol. 35, No. 12, 1989, pp. 949-955. http://dx.doi.org/10.1016/0022-1910(89)90018-8
[9] I. Canard, “Influence de L’intensité du Stimulus et de L’ionisation de L’atmosphère sur L’apprentissage Olfactif de l’Abeille Apis mellifica Ligustica,” DEA of Behavior Biology, University of Paris, 1990.
[10] I. Canard, M. Devos and P. Laffort, “Influence de L’intensité du Stimulus et de L’ionisation de L’atmosphère sur L’apprentissage Olfactif de L’Abeille,” 10th Meeting on Insect Physiology, Toulouse, 19-21 September 1990.
[11] P. Laffort and F. Patte, “Derivation of Power Law Exponents from Olfactory Thresholds for Pure Substances,” Annals of the New York Academy of Sciences, Vol. 510, 1987, pp. 436-439. http://dx.doi.org/10.1111/j.1749-6632.1987.tb43582.x
[12] F. Chauvin, “Amélioration de la Définition et de la Détermination des Paramètres de Solubilité. Application à L’olfaction,” Ph.D. Thesis, University of Bourgogne, Dijon, 1998.
[13] P. Laffort, “Apprentissage Olfactif chez L’Abeille: Quelques Résultats Susceptibles D’extension à l’Homme,” In: G. Bertrand, Ed., Le Gout, Network CLUSE, Third Cross-Border Symposium, 12-13 September 1996, University of Bourgogne, Dijon, 1998, pp. 579-584.
[14] P. Laffort, “The Concept of Comfort Concentration in Olfaction from Honey Bee Experimentation. Similarities and Differences with Human Olfaction,” Monell and TOSTQ Sweetness Conference Workshop, 23-24 April 2001, Monell Chemical Senses Centre, Philadelphia.
[15] ChemAxon Ltd., 2012. http://www.chemaxon.com/products/calculator-plugins
[16] P. Laffort and P. Héricourt, “Solvation Parameters of Solutes: An Attempt of Improvements in Characterization and Determination,” The Open Applied Informatics Journal, Vol. 2, 2008, pp. 22-31. http://dx.doi.org/10.2174/1874136300802010022
[17] P. Ertl, B. Rohde and P. Selzer, “Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties,” Journal of Medical Chemistry, Vol. 43, No. 20, 2000, pp. 3714-3717. http://dx.doi.org/10.1021/ jm000942e
[18] S. Winiwarter, N. M. Bonham, F. Ax, A. Hallberg, H. Lennernas and A. Karlén, “Correlation of Human Jejunal Permeability (in Vivo) of Drugs with Experimentally and Theoretically Derived Parameters. A Multivariate Data Analysis Approach,” Journal of Medical Chemistry, Vol. 41, No. 25, 1998, pp. 4939-4949. http://dx.doi.org/10.1021/jm9810102
[19] G. N. Lewis, “The Atom and the Molecule,” Journal of the American Chemical Society, Vol. 38, No. 4, 1916, pp. 762-785. http://dx.doi.org/10.1021/ja02261a002
[20] M. H. Abraham, “Scales of Solute Hydrogen-Bonding: Their Construction and Application to Physicochemical and Biochemical Processes,” Chemical Society Reviews, Vol. 22, No. 2, 1993, pp. 73-83. http://dx.doi.org/10.1039/cs9932200073
[21] A. M. Zissimos, M. H. Abraham, A. Klamt, F. Eckert and J. Wood, “A Comparison between the Two General Sets of Linear Energy Descriptors of Abraham and Klamt,” Journal of Chemical Information and Computer Sciences, Vol. 42, No. 6, 2002, pp. 1320-1331. http://dx.doi.org/10.1021/ci025530o
[22] L. J. Van Gemert, “Compilations of Odour Threshold Values in Air, Water and Other Media,” Oliemans, Punter & Partners BV, Zeist, 2011.
[23] P. Laffort, “Essai de Standardisation des Seuils Olfactifs Humains pour 192 Corps Purs,”Archives des Sciences Physiologiques, Vol. 17, 1963, pp. 75-105.
[24] M. Devos, F. Patte, J. Rouault, P. Laffort and L. J. Van Gemert, “Standardized Human Olfactory Thresholds in Air,” IRL Press, Oxford, 1990.
[25] M. Devos, J. Rouault, P. Laffort and L. J. Van Gemert, “Standardized Human Olfactory Thresholds in Air,” Unpublished Updating of the 1990 Version, 1995.
[26] W. S. Cain, “Odor Intensity Differences in the Exponent of the Psychophysical Function,” Perception & Psychophysics, Vol. 6, No. 6, 1969, pp. 349-354. http://dx.doi.org/10.3758/BF03212789
[27] M. Devos, J. Rouault and P. Laffort, “Standardized Olfactory Power Law Exponents in Man,” Editions Universitaires de Dijon, Dijon, 2002.
[28] V. C. Allison and S. H. Katz, “An Investigation of Stenches and Odors for Industrial Purposes,” Journal of Industrial & Engineering Chemistry, Vol. 11, No. 4, 1919, pp. 336-339. http://dx.doi.org/10.1021/ ie50112a024
[29] A. Dravnieks, “Fundamentals of Odor Perception. Their Applicability to Air Pollution Control Programs,” NCASI Technical Bulletin, Vol. 54, 1971, pp. 1-27.
[30] ASTM Historical Standard: ASTM E544-99, “Standard Practices for Referencing Suprathreshold Odor Intensity,” American Society for Testing and Materials, Philadelphia, 2004.
[31] AFNOR, “Air Quality, Olfactometric Measurements, Measurement of the Odour of Gaseous Effluent, Supra-Threshold Methods,” French Standard AFNOR NF X 43-103, Paris, 1996.
[32] A. Dravnieks, “Correlation of Odor Intensities and Vapor Pressures with Structural Properties of Odorants,” In: R. A. Scanlon, Ed., Flavor Quality, Objective Measurement, ACS Symposium Series, Vol. 51, American Chemical Society, Washington DC, 1977, pp. 11-28. http://dx.doi.org/10.1021/bk-1977-0051.ch002
[33] M. H. Abraham, J. M. R Gola, J. E. Cometto-Muniz and W. S. Cain, “A Model for Odour Thresholds,” Chemical Senses, Vol. 27, No. 3, 2002, pp. 95-104. http://dx.doi.org/10.1093/chemse/27.2.95
[34] M. H. Abraham, R. Sánchez-Moreno, J. E. Cometto-Muniz and W. S. Cain, “An Algorithm for 353 Odor Detection Thresholds in Humans,” Chemical Senses, Vol. 37, No. 3, 2012, pp. 207-218.
[35] M. Zarzo, “Effect of Functional Group and Carbon Chain Length on the Odor Detection Threshold of Aliphatic Compounds,” Sensors, Vol. 12, No. 4, 2012, pp. 4105-4112. http://dx.doi.org/10.3390/ s120404105
[36] H. Abdi, “Multiple Correlation Coefficient,” In: N. J. Salkind, Ed., Encyclopedia of Measurement and Statistics, Sage, Thousand Oaks, 2007, pp. 648-651. http://dx.doi.org/10.4135/9781412952644.n91
[37] P. Laffort, M. Etcheto, F. Patte and P Marfaing, “Implications of Power Law Exponent in Synergy and Inhibition of Olfactory Mixtures,” Chemical Senses, Vol. 14, No. 1, 1989, pp. 11-23. http://dx.doi.org/ 10.1093/chemse/14.1.11
[38] P. Laffort, “Inhibitory Process of the Olfactory Perception,” French Patent No 9308079, CNRS, 1993. PCT Extension in Europe, USA and Canada in 1994, Ratified in Europe in 1995 and First Semester 1996 (16 Contracting Countries of the Agreement on the European Patent) Come into the Public Domain in July 1996.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.