"" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
ENG> Vol.5 No.10B, October 2013
Share This Article:
Cite This Paper >>

Compensation of Finite Bandwidth Effect by Using an Optimal Filter in Photoacoustic Imaging

Abstract Full-Text HTML Download Download as PDF (Size:585KB) PP. 27-31
DOI: 10.4236/eng.2013.510B006    2,949 Downloads   3,995 Views  
Author(s)    Leave a comment
Chen Zhang, Yan Zhang, Yuanyuan Wang


Department of Electronic Engineering, Fudan University, Shanghai, China.


Most existing reconstruction algorithms for photoacoustic imaging (PAI) assume that transducers used to receive ultrasound signals have infinite bandwidth. When transducers with finite bandwidth are used, this assumption may result in reduction of the imaging contrast and distortions of reconstructed images. In this paper, we propose a novel method to compensate the finite bandwidth effect in PAI by using an optimal filter in the Fourier domain. Simulation results demonstrate that the use of this method can improve the contrast of the reconstructed images with finite-bandwidth ultrasound transducers.


Photoacoustic Tomography; Finite Bandwidth Effect; Optimal Filter

Cite this paper

Zhang, C. , Zhang, Y. and Wang, Y. (2013) Compensation of Finite Bandwidth Effect by Using an Optimal Filter in Photoacoustic Imaging. Engineering, 5, 27-31. doi: 10.4236/eng.2013.510B006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. V. Wang, “Tutorial on Photoacoustic Microscopy and Computed Tomography,” IEEE Journal of Selected Topics Quantum Electronics, Vol. 14, No. 1, 2008, pp. 171- 179. http://dx.doi.org/10.1109/JSTQE.2007.913398
[2] C. Li and L. V. Wang, “Photoacoustic Tomography and Sensing in Biomedicine,” Physics in Medicine and Biology, Vol. 54, No. 19, 2009, pp. R59-R97. http://dx.doi.org/10.1088/0031-9155/54/19/R01
[3] M. Xu and L. V. Wang, “Universal Back-Projection Algorithm for Photacoustic Computed Tomography,” Physical Review E, Vol. 71, No. 1, Article ID: 016706. http://dx.doi.org/10.1103/PhysRevE.71.016706
[4] P. Burgholzer, J. Bauer-Marschallinger, H. Grun, M. Haltmeier and G. Paltauf, “Temporal Back-Projection Algorithms for Photoacoustic Tomography with Integrating Line Detectors,” Inverse Problems, Vol. 23, No. 6, 2007, pp. S65-S80. http://dx.doi.org/10.1088/0266-5611/23/6/S06
[5] M. Xu, Y. Xu and L. V. Wang, “Time-Domain Reconstruction Algorithms and Numerical Simulations for Thermoacoustic Tomography in Various Geometries,” IEEE Transactions on Biomedical Engineering, Vol. 50, No. 9, 2003, pp. 1086-1099. http://dx.doi.org/10.1109/TBME.2003.816081
[6] Y. Xu, D. Feng and L. V.Wang, “Exact Frequency-Domain Reconstruction for Thermoacoustic Tomography: I. Planar Geometry,” IEEE Transactions on Medical Imaging, Vol. 21, No. 7, 2002, pp. 823-828. http://dx.doi.org/10.1109/TMI.2002.801172
[7] L. A. Kunyansky, “Explicit Inversion Formulae for the Spherical Mean Radon Transform,” Inverse Problems, Vol. 23, 2007, pp. 373-383. http://dx.doi.org/10.1088/0266-5611/23/1/021
[8] M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Keng and L. V. Wang, “Half-Time Image Reconstruction in Thermoacoustic Tomography,” IEEE Transactions on Medical Imaging, Vol. 24, No. 2, 2005, pp. 199-210. http://dx.doi.org/10.1109/TMI.2004.839682
[9] P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato and J. J. L. Carson, “Three-Dimensional Photoacoustic Imaging by Sparse-Array Detection and Iterative Image Reconstruction,” Journal of Biomedical Optics, Vol. 13, No. 5, 2008. http://dx.doi.org/10.1121/1.1501898
[10] G. Paltauf, J. A. Viator, S. A. Prahl and S. L. Jacques, “Iterative Reconstructional Gorithm for Optoacoustic Imaging,” Journal of the Acoustical Society of America, Vol. 112, No. 4, 2002, pp. 1536-1544. http://dx.doi.org/10.1121/1.1501898
[11] K. Wang, S. A. Ermilov, R. Su, H. Brecht, A. A. Oraevsky and M. A. Anastasio, “An Imaging Model In- corporating Ultra-sonic Tranducer Properties for Three-Dimensional Optoacoustic Tomography,” IEEE Transactions on Medical Imaging, Vol. 30, No. 2, 2011, pp. 203- 213. http://dx.doi.org/10.1109/TMI.2010.2072514
[12] M. Li, Y. Tseng and C. Cheng, “Model-Based Correction of Finite Aperture Effect in Photoacoustic Tomography,” Optics Express, Vol. 18, No. 25, 2010. http://dx.doi.org/10.1364/OE.18.026285
[13] B. T. Cox, S. Kara, S. R. Arridge and P. C. Beard, “k-Space Propagation Models for Acoustically Heterogeneous Media: Application to Biomedical Photoacoustics,” Journal of the Acoustical Society of America, Vol. 121, No. 6, 2007, pp. 3453-3464. http://dx.doi.org/10.1121/1.2717409
[14] B. E. Treeby and B. T. Cox, “k-Wave: MATLAB Tool-box for the Simulation and Reconstruction of Photoacoustic Wave Fields,” Journal of Biomedical Optics, Vol. 15, No. 2, 2010. http://dx.doi.org/10.1117/1.3360308

comments powered by Disqus
ENG Subscription
E-Mail Alert
ENG Most popular papers
Publication Ethics & OA Statement
ENG News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.