Ionization Process of Atoms by Intense Femtosecond Chirped Laser Pulses


We numerically investigate the ionization mechanism in a real hydrogen atom under intense fem to second chirped laser pulses. The central carrier frequency of the pulses is chosen to be 6.2 eV (λ = 200 nm), which corresponds to the fourth-harmonic of the Ti:Sapphire laser. Our simulation of the laser-atom interaction consists on numerically solving the three-dimensional time-dependent Schrodinger equation with a spectral method. The unperturbed wave functions and electronic energies of the atomic system were found by using an L2 discretization technique based on the expansion of the wave functions on B-spline functions. The presented results of kinetic energy spectra of the emitted electrons show the sensitivity of the ionization process to the chirp parameter. Particular attention is paid to the important role of the excited bound states involved in the ionization paths.

Share and Cite:

S. Laulan, J. Haché, H. Ba and S. Barmaki, "Ionization Process of Atoms by Intense Femtosecond Chirped Laser Pulses," Journal of Modern Physics, Vol. 4 No. 10A, 2013, pp. 20-26. doi: 10.4236/jmp.2013.410A1002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. C. Diels and W. Rudolph, “Ultrashort Laser Pulse Phenomenon: Fundamentals, Techniques and Applications on Femtosecond Time Scale,” Academic Press, New York, 1996.
[2] P. Agostini and L. F. DiMauro, Reports on Progress in Physics, Vol. 67, 2004, pp. 813-855.
[3] K. Yamanouchi, S. L. Chin, P. Agostini and G. Ferrante, “Progress in Ultrafast Intense Laser Science III,” Springer-Verlag, New York, 2007.
[4] R. B. Vrijen, D. I. Duncan and L. D. Noordam, Physical Review A, Vol. 56, 1997, pp. 2205-2212.
[5] K. J. Schafer and K. C. Kulander, Laser Physics, Vol. 7, 1997, pp. 740-750.
[6] J. Cao, C. J. Barden and K. R. Wilson, Journal of Chemical Physics, Vol. 113, 2000, pp. 1898-1909.
[7] J. Lambert, M. W. Noel and T. F. Gallagher, Physical Review A, Vol. 66, 2002, Article ID: 053413.
[8] C. W. S. Conover, M. C. Doogue and F. J. Struwe, Physical Review A, Vol. 65, 2002, Article ID: 033414.
[9] V. Prasad, B. Dahija and K. Yamashita, PhysicaScripta, Vol. 82, 2010, Article ID: 055302.
[10] Marani and E. J. Robinson, Journal of Physics B, Vol. 32, 1999, pp. 711-736.
[11] J. Wu, G. T. Zhang, C. L. Xia and X. S. Liu, Physical Review A, Vol. 82, 2010, Article ID: 013411.
[12] J. J. Carrera and S. I. Chu, Physical Review A, Vol. 75, 2007, Article ID: 033807.
[13] T. Nakajima, Physical Review A, Vol. 75, 2007, Article ID: 053409.
[14] Y. Xiang, Y. Niu and S. Gong, Physical Review A, Vol. 80, 2009, Article ID: 023423.
[15] P. Agostini, F. Fabre, G. Mainfray, G. Petite and N. K. Rahman, Physical Review Letters, Vol. 42, 1979, pp. 1127-1130.
[16] J. Javanainen, J. H. Eberly and Q. Su, Physical Review A, Vol. 38, 1988, pp. 3430-3446.
[17] W. Becker, F. Grasbon, R. Kopold, D. B. Milosevic, G. G. Paulus and H. Walther, Advances in Atomic Molecular and Optical Physics, Vol. 48, 2002, pp. 35-98.
[18] R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher and M. E. Geusic, Physical Review Letters, Vol. 59, 1987, pp. 1092-1095.
[19] C. de Boor, “A Practical Guide to Splines,” Springer-Verlag, New York, 1978.
[20] H. Bachau, E. Cormier, P. Decleva, J. E. Hansen and F. Martin, Reports on Progress in Physics, Vol. 64, 2001, pp. 1815-1943.
[21] S. Laulan and H. Bachau, Physical Review A, Vol. 68, 2003, Article ID: 013409.
[22] S. Laulan and H. Bachau, Physical Review A, Vol. 69, 2004, Article ID: 033408.
[23] E. Foumouo, S. Laulan, B. Piraux and H. Bachau, Journal of Physics B, Vol. 39, 2006, pp. S427-S435.
[24] B. E. A. Saley and M. C. Teich, “Fundamendals of Photonics,” John Wiley and Sons Inc., Hoboken, 2007.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.