Detailed Micro Raman Spectroscopy Analysis of Doped Silicon Thin Film Layers and Its Feasibility for Heterojunction Silicon Wafer Solar Cells


Hydrogenated doped silicon thin films deposited using RF (13.56 MHz) PECVD were studied in detail using micro Raman spectroscopy to investigate the impact of doping gas flow, film thickness, and substrate type on the film characteristics. In particular, by deconvoluting the micro Raman spectra into amorphous and crystalline components, qualitative and quantitative information such as bond angle disorder, bond length, film stress, and film crystallinity can be determined. By selecting the optimum doped silicon thin film deposition conditions, and combining our p-doped and n-doped silicon thin films in different heterojunction structures, we demonstrate both (i) an efficient field effect passivation and (ii) further improvement to c-Si/a-Si:H(i) interface defect density with observed improvement in implied open-circuit voltage VOC and minority carrier lifetimes across all injections levels of interest. In particular, the heterojunction structure (a-Si:H(p)/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(p)) demonstrates a minority carrier lifetime of 2.4 ms at an injection level of 1015 cm-3, and a high implied open-circuit voltage of 725 mV. Simulation studies reveal a strong dependence of the interface defect density Dit on the heterojunction silicon wafer solar cell performance, affected by the deposition conditions of the overlying doped silicon thin film layers. Using our films, and a fitted Dit of 5 × 1010 cm-2·eV-1, we demonstrate that a solar cell efficiency of ~22.5% can be potentially achievable.

Share and Cite:

Ling, Z. , Ge, J. , Stangl, R. , Aberle, A. and Mueller, T. (2013) Detailed Micro Raman Spectroscopy Analysis of Doped Silicon Thin Film Layers and Its Feasibility for Heterojunction Silicon Wafer Solar Cells. Journal of Materials Science and Chemical Engineering, 1, 1-14. doi: 10.4236/msce.2013.15A001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. V. Sark, L. Korte and F. Roca, “Introduction—Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells,” In: W. G. J. H. M. V. Sark, L. Korte and F. Roca, Eds., Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, Springer, Berlin, Heidelberg, 2012, pp. 1-12.
[2] A. Mette, “New Concepts for Front Side Metallization of Industrial Silicon Solar Cells,” Ph.D. Thesis, Fakultat für Angewandte Wissenschaften, Universitat Freiburg, Freiburg im Breisgau, 2007.
[3] J. Zhao, A. Wang and M. A. Green, “Emitter Design for High-Efficiency Silicon Solar Cells. Part I: Terrestrial Cells,” Progress in Photovoltaics: Research and Applications, Vol. 1, No. 3, 1993, pp. 193-202.
[4] S. D. Wolf and M. Kondo, “Nature of Doped a-Si:H/c-Si Interface Recombination,” Journal of Applied Physics, Vol. 105, No. 10, 2009, Article ID: 103707.
[5] L. Korte and M. Schmidt, “Investigation of Gap States in Phosphorous-Doped Ultra-Thin a-Si:H by Near-UV Photoelectron Spectroscopy,” Journal of Non-Crystalline Solids, Vol. 354, No. 19-25, 2008, pp. 2138-2143.
[6] F. Einsele, P. J. Rostan, M. B. Schubert and U. Rau, “Recombination and Resistive Losses at ZnO/aSi:H/cSi Interfaces in Heterojunction Back Contacts for Si Solar Cells,” Journal of Applied Physics, Vol. 102, No. 9, 2007, Article ID: 094507.
[7] P. J. Rostan, U. Rau, V. X. Nguyen, T. Kirchartz, M. B. Schubert and J. H. Werner, “Low-Temperature a-Si:H/ ZnO/Al Back Contacts for High-Efficiency Silicon Solar Cells,” Solar Energy Materials & Solar Cells, Vol. 90, No. 9, 2006, pp. 1345-1352.
[8] T. Mueller, S. Schwertheim, N. Mueller, K. Meusinger, B. Wdowiak, O. Grewe and W. Fahrner, “High Efficiency Silicon Heterojunction Solar Cell Using Novel Structure,” 35th IEEE Photovoltaic Specialists Conference (PVSC’10), Honolulu, 20-25 June 2010, pp. 000683-000688.
[9] T. Mueller, “Heterojunction Solar Cells (a-Si/c-Si): Investigations on PECV Deposited Hydrogenated Silicon Alloys for Use as High-Quality Surface Passivation and Emitter/BSF,” Ph.D. Thesis, University of Hagen, Hagen, 2009.
[10] M. Kaneiwa, S. Okamoto, I. Yamasaki, M. Nishida and T. Nammori, “Cell Structures with Low-High Heterojunction of c-Si and [mu]c-Si: H under Rear Contact for Improvement of Efficiencies,” Solar Energy Materials and Solar Cells, Vol. 34, No. 1-4, 1994, pp. 183-191.
[11] M. W. M. van Cleef, J. K. Rath, F. A. Rubinelli, C. H. M. van der Werf, R. E. I. Schropp and W. F. van der Weg, “Performance of Heterojunction Microcrystalline Silicon n Crystalline Silicon Solar Cells,” Journal of Applied Physics, Vol. 82, No. 12, 1997, pp. 6089-6095.
[12] Z. Iqbal and S. Veprek, “Raman Scattering from Hydrogenated Microcrystalline and Amorphous Silicon,” Journal of Physics C: Solid State Physics, Vol. 15, No. 2, 1982, p. 377.
[13] M. Ledinsky, A. Vetushka, J. Stuchlík, A. Fejfar and J. Kocka, “Raman Mapping of Microcrystalline Silicon Thin Films with High Spatial Resolution,” Physica Status Solidi (c), Vol. 7, No. 3-4, 2010, pp. 704-707.
[14] C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier and A. Shah, “Relationship between Raman Crystallinity and Open-Circuit Voltage in Microcrystalline Silicon Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 81, No. 1, 2004, pp. 61-71.
[15] H. Richter, Z. P. Wang and L. Ley, “The One Phonon Raman Spectrum in Microcrystalline Silicon,” Solid State Communications, Vol. 39, No. 5, 1981, pp. 625-629.
[16] P. Danesh, B. Pantchev, I. Savatinova, E. Liarokapis and Y. S. Raptis, “Short Range Order and Microstructure in Hydrogenated Amorphous Silicon,” Journal of Applied Physics, Vol. 69, No. 11, 1991, pp. 7656-7659.
[17] P. V. Huong, D. Mencaraglia, P. Andro and J. Baixeras, “Infrared and Resonance Raman Spectroscopic Studies of Semiconductors-Doped Amorphous Silicon,” Journal of Molecular Structure, Vol. 115, 1984, pp. 473-476.
[18] Z. P. Ling, J. Ge, T. Mueller, J. Wong and A. G. Aberle, “Optimisation of p-Doped μc-Si:H Emitter Layers in Crystalline-Amorphous Silicon Heterojunction Solar Cells,” Energy Procedia, Vol. 15, 2012, pp. 118-128.
[19] H. Keppner, P. Torres, R. Flückiger, J. Meier, A. Shah, C. Fortmann, P. Fath, G. Willeke, K. Happle and H. Kiess, “Passivation Properties of Amorphous and Microcrystalline Silicon Layers Deposited by VHF-GD for Crystalline Silicon Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 34, No. 1-4, 1994, pp. 201-209.
[20] J. Mitchell, D. Macdonald, A. Cuevas and J. Cornish, “Surface Passivation of nand p-Type Crystalline Silicon Wafers by Amorphous Silicon Films,” Solar 2004: Life, the Universe and Renewables, 2004, p. 7.
[21] J.-W. A. Schüttauf, K. H. M. V. D. Werf, I. M. Kielen, W. G. J. H. M. V. Sark, J. K. Rath and R. E. I. Schropp, “Excellent Crystalline Silicon Surface Passivation by Amorphous Silicon Irrespective of the Technique Used for Chemical Vapor Deposition,” Applied Physics Letters, Vol. 98, No. 15, 2011, pp. 153514-153517.
[22] B. Strahm, Y. Andrault, D. Batzner, D. Lachenal, C. Guérin, M. Kobas, J. Mai, B. Mendes, T. Schulze, G. Wahli and A. Buechel, “Uniformity and Quality of Monocrystalline Silicon Passivation by Thin Intrinsic Amorphous Silicon in a New Generation Plasma-Enhanced Chemical Vapor Deposition Reactor,” Materials Research Society Symposium Proceedings, Vol. 1245, 2010, pp. 1245-A01-1245-A04.
[23] M. R. Page, E. Iwaniczko, Y. Xu, L. Roybal, R. Bauer, H.-C. Yuan, Q. Wang and D. L. Meier, “Photoconductive Decay Lifetime and Suns-Voc Diagnostics of Efficient Heterojunction Solar Cells,” 33rd IEEE Photovoltaic Specialists Conference, San Diego, 11-16 May 2008, pp. 1-4.
[24] M. J. Pelletier, “Analytical Applications of Raman Spectroscopy,” MPG Books Ltd., Bodmin, 1999
[25] D. W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 2, 1963, pp. 431-441.
[26] D. Beeman, R. Tsu and M. F. Thorpe, “Structural Information from the Raman Spectrum of Amorphous Silicon,” Physical Review B, Vol. 32, No. 2, 1985, pp. 874878.
[27] R. A. Street, “Sweep-Out Measurements of Band-Tail Carriers in a-Si: H,” Philosophical Magazine B (UK), Vol. 60, No. 2, 1989, pp. 213-236.
[28] P. A. Fedders and D. A. Drabold, “Theory of Boron Doping in a-Si:H,” Physical Review B, Vol. 56, No. 4, 1997, pp. 1864-1867.
[29] N. F. Mott, “Electrons in Disordered Structures,” Advances in Physics, Vol. 16, No. 61, 1967, pp. 49-144.
[30] M. Marinov and N. Zotov, “Model Investigation of the Raman Spectra of Amorphous Silicon,” Physical Review B, Vol. 55, No. 5, 1997, pp. 2938-2944.
[31] E. M. Anastassakis, “Morphic Effects in Lattice Dynamics,” In: G. K. Horton and A. A. Maradudin, Eds., Dynamical Properties of Solids, North-Holland Publishing Company, Amsterdam, 1980, p. 157.
[32] T. Englert, G. Abstreiter and J. Pontcharra, “Determination of Existing Stress in Silicon Films on Sapphire Substrate Using Raman Spectroscopy,” Solid-State Electronics, Vol. 23, No. 1, 1980, pp. 31-33.
[33] I. D. Wolf, H. E. Maes and S. K. Jones, “Stress Measurements IN Silicon Devices through Raman Spectroscopy: Bridging the Gap between Theory and Experiment,” Journal of Applied Physics, Vol. 79, No. 9, 1996, pp. 7148-7156.
[34] E. Anastassakis, “Physical Problems in Microelectronics,” Proceedings of the 4th International School ISPPM, Varna, 12-18 May 1985, p. 128.
[35] K. Laaziri, S. Kycia, S. Roorda, M. Chicoine, J. L. Robertson, J. Wang and S. C. Moss, “High Resolution Radial Distribution Function of Pure Amorphous Silicon,” Physical Review Letters, Vol. 82, No. 17, 1999, pp. 34603463.
[36] R. Tsu and J. G. Hernandez, “Determination of Energy Barrier for Structural Relaxation in A-Si and A-Ge by Raman Scattering,” Journal of Non-Crystalline Solids, Vol. 66, No. 1-2, 1984, pp. 109-114.
[37] A. Battaglia, S. Coffa, F. Priolo, G. Compagnini and G.A. Baratta, “Low-Temperature Modifications in the Defect Structure of Amorphous Silicon Probed by in Situ Raman Spectroscopy,” Applied Physics Letters, Vol. 63, No. 16, 1993, pp. 2204-2206.
[38] P. A. Stolk, F. W. Saris, A. J. M. Berntsen, W. F. van der Weg, L. T. Sealy, R. C. Barklie, G. Krotz and G. Muller, “Contribution of Defects to Electronic, Structural, and Thermodynamic Properties of Amorphous Silicon,” Journal of Applied Physics, Vol. 75, No. 11, 1994, pp. 72667286.
[39] S. Roorda, W. C. Sinke, J. M. Poate, D. C. Jacobson, S. Dierker, B. S. Dennis, D. J. Eaglesham, F. Spaepen and P. Fuoss, “Structural Relaxation and Defect Annihilation in Pure Amorphous Silicon,” Physical Review B, Vol. 44, No. 8, 1991, pp. 3702-3725.
[40] M. Ishimaru, “Atomistic Simulations of Structural Relaxation Processes in Amorphous Silicon,” Journal of Applied Physics, Vol. 91, No. 2, 2002, pp. 686-689.
[41] R. W. Collins, A. S. Ferlauto, G. M. Ferreira, C. Chen, J. Koh, R. J. Koval, Y. Lee, J. M. Pearce and C. R. Wronski, “Evolution of Microstructure and Phase in Amorphous, Protocrystalline, and Microcrystalline Silicon Studied by Real Time Spectroscopic Ellipsometry,” Solar Energy Materials and Solar Cells, Vol. 78, No. 1-4, 2003, pp. 143-180.
[42] G. M. Ferreira, C. Chen, R. J. Koval, J. M. Pearce, C. R. Wronski and R. W. Collins, “Optimization of Protocrystalline Silicon P-Type Layers for Amorphous Silicon N-I-P Solar Cells,” Journal of Non-Crystalline Solids, Vol. 338-340, 2004, pp. 694-697.
[43] P. R. i. Cabarrocas, N. Layadi, T. Heitz, B. Drévillon and I. Solomon, “Substrate Selectivity in the Formation of Microcrystalline Silicon: Mechanisms and Technological Consequences,” Applied Physics Letters, Vol. 66, No. 26, 1995, pp. 3609-3611.
[44] H. Fujiwara, M. Kondo and A. Matsuda, “Nucleation Mechanism of Microcrystalline Silicon from the Amorphous Phase,” Journal of Non-Crystalline Solids, Vol. 338-340, 2004, pp. 97-101.
[45] F. Kail, J. Farjas, P. Roura, C. Secouard, O. Nos, J. Bertomeu, F. Alzina and P. Roca i Cabarrocas, “Relaxation and Derelaxation of Pure and Hydrogenated Amorphous Silicon during Thermal Annealing Experiments,” Applied Physics Letters, Vol. 97, No. 3, 2010, Article ID: 031918.
[46] S. Chakraborty and D. A. Drabold, “Static and Dynamic Properties of Hydrogenated Amorphous Silicon with Voids,” Physical Review B, Vol. 79, No. 11, 2009, pp. 115214-115222.
[47] M. B. Aksari and A. Eray, “Modeling and Optimisation of A-Si:H/C-Si Heterojunction Solar Cells,” 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, 5-6 September 2011, pp. 1497-1502.
[48] C. Leendertz, N. Mingirulli, T. F. Schulze, J. P. Kleider, B. Rech and L. Korte, “Discerning Passivation Mechanisms at A-Si:H/C-Si Interfaces by Means of Photoconductance Measurements,” Applied Physics Letters, Vol. 98, No. 20, 2011, Article ID: 202108.
[49] M. Nath, P. Chatterjee, J. Damon-Lacoste and P. Roca i Cabarrocas, “Criteria for Improved Open-Circuit Voltage in A-Si:H(N)/C-Si(P) Front Heterojunction with Intrinsic Thin Layer Solar Cells,” Journal of Applied Physics, Vol. 103, No. 3, 2008, Article ID: 034506.
[50] M. Rahmouni, A. Datta, P. Chatterjee, J. Damon-Lacoste, C. Ballif and P. Roca i Cabarrocas, “Carrier Transport and Sensitivity Issues in Heterojunction with Intrinsic Thin Layer Solar Cells on N-Type Crystalline Silicon: A Computer Simulation Study,” Journal of Applied Physics, Vol. 107, No. 5, 2010, Article ID: 054521.
[51] T. F. Schulze, H. N. Beushausen, C. Leendertz, A. Dobrich, B. Rech and L. Korte, “Interplay of Amorphous Silicon Disorder and Hydrogen Content with Interface Defects in Amorphous/Crystalline Silicon Heterojunctions,” Applied Physics Letters, Vol. 96, No. 25, 2010, Article ID: 252102.
[52] M. Taguchi, E. Maruyama and M. Tanaka, “Temperature Dependence of Amorphous/Crystalline Silicon Heterojunction Solar Cells,” Japanese Journal of Applied Physics, Vol. 47, No. 2, 2008, pp. 814-818.
[53] P. Altermatt, “Models for Numerical Device Simulations of Crystalline Silicon Solar Cells—A Review,” Journal of Computational Electronics, Vol. 10, No. 3, 2011, pp. 314-330.
[54] A. G. Aberle, “Crystalline Silicon Solar Cells: Advanced Surface Passivation and Analysis,” Centre for Photovoltaic Engineering, University of New South Wales, Sydney, 1999.
[55] U. Hansen and P. Vogl, “Hydrogen Passivation of Silicon Surfaces: A Classical Molecular-Dynamics Study,” Physical Review B, Vol. 57, No. 20, 1998, pp. 13295-13304.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.