Share This Article:

Permanence and Global Stability for a Non-Autonomous Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes with Delays

Abstract Full-Text HTML Download Download as PDF (Size:136KB) PP. 47-56
DOI: 10.4236/am.2011.21006    4,567 Downloads   8,722 Views   Citations
Author(s)    Leave a comment


In this paper, a nonautonomous predator-prey system based on a modified version of the Leslie-Gower scheme and Holling-type II scheme with delayed effect is investigated. The general criteria of integrable form on the permanence are established. By constructing suitable Lyapunov functionals, a set of easily verifiable sufficient conditions are derived for global stability of any positive solutions to the model

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. Hu and L. Nie, "Permanence and Global Stability for a Non-Autonomous Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes with Delays," Applied Mathematics, Vol. 2 No. 1, 2011, pp. 47-56. doi: 10.4236/am.2011.21006.


[1] M. Fan, Q. Wang and X. F. Zou, “Dynamics of Non-autonomous Ratio-Dependent Predator-Prey System,” Proceedings of the Royal Society of Edinburgh: Section A, Vol. 133, No. 1, 2003, pp. 97-118. doi:10.1017/S0308 210500002304
[2] Y. Kuang, “Delay Differential Equations, with Applications in Population Dynamics,” Academic Press, New York, 1993.
[3] Z. Teng, “Persistence and Stability in General Non-autonomous Single-Species Kolmogorov Systems with Delays,” Nonlinear Analysis: Real World Applications, Vol. 8, No. 1, 2007, pp. 230-248. doi:10.1016/j.nonrwa. 2005.08.003
[4] Z. Teng and M. Rehim, “Persistence in Nonautonomous Predator-Prey Systems with Infinite Delays,” Journal of Computational and Applied Mathematics, Vol. 197, No. 2, 2006, pp. 302-321. doi:10.1016/
[5] R. K. Upadhyay and S. R. K. Iyengar, “Effect of Seasonality on the Dynamics of 2 and 3 Species Prey-Predator System,” Nonlinear Analysis: Real World Applications, Vol. 6, No. 3, 2005, pp. 509-530. doi:10.1016/j.nonrwa. 2004.11.001
[6] R. Xu, M. A. J. Chaplain and F. A. Davidson, “Periodic Solutions for a Predator-Prey Model with Holling-Type Functional Response and Time Delays,” Applied Mathematics and Computation, Vol. 161, No. 2, 2005, pp. 637-654. doi:10.1016/j.amc.2003.12.054
[7] M. A. Aziz-Alaoui, “Study of a Leslie-Gower-Type Tritrophic Population,” Chaos, Solitons & Fractals, Vol. 14, No. 8, 2002, pp. 1275-1293. doi:10.1016/S0960-0779(02) 00079-6
[8] E. Beretta and Y. Kuang, “Global Analyses in Some Delayed Ratio-Depended Predator-Prey Systems,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 32, No. 3, 1998, pp. 381-408.
[9] C. Letellier and M. A. Aziz-Alaoui, “Analysis of the Dynamics of a Realistic Ecological Model,” Chaos, Solitons & Fractals, Vol. 13, No. 1, 2002, pp. 95-107. doi:10.1016/S0960-0779(00)00239-3
[10] M. A. Aziz-Alaoui and M. D. Okiye, “Boundedness and Global Stability for a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes,” Applied Mathematics Letters, Vol. 16, No. 7, 2003, pp. 1069-1075. doi:10.1016/S0893-9659(03)90096-6
[11] A. F. Nindjin and M. A. Aziz-Alaoui, “Analysis of a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes with Time Delay,” Nonlinear Analysis: Real World Applications, Vol. 7, No. 5, 2006, pp. 1104-1118. doi:10.1016/j.nonrwa.2005.10.003
[12] R. K. Upadhyay and V. Rai, “Crisis-Limited Chaotic Dynamics in Ecological Systems,” Chaos, Solitons & Fractals, Vol. 12, No. 2, 2001, pp. 205-218. doi:10.1016/ S0960-0779(00)00141-7
[13] R. R. Vance and E. A. Coddington, “A Nonautonomous Model of Population Growth,” Journal of Mathematical Biology, Vol. 27, No. 5, 1989, pp. 491-506. doi:10.1007/ BF00288430
[14] Z. Teng and Z. Li, “Permanence Criteria in Non-autonomous Predator-Prey Kolmogorov Systems and Its Applications,” Dynamical Systems, Vol. 19, No. 2, 2004, pp. 171-194. doi:10.1080/14689360410001698851
[15] Z. Teng and L. Chen, “Uniform Persistence and Existence of Strictly Positive Solutions in Nonautonomous Lotka-Volterra Competitive Systems with Delays,” Computers & Mathematics with Applications, Vol. 37, No. 7, 1999, pp. 61-71.
[16] W. Wang and Z. Ma. “Harmless Delays for Uniform Persistence,” Journal of Mathematical Analysis and Applications, Vol. 158, No. 1, 1991, pp. 256-268. doi:10. 1016/0022-247X(91)90281-4
[17] K. Gopalsamy, “Stability and Oscillations in Delay Different Equations of Population Dynamics,” Kluwer Academic, Norwell, 1992.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.