Structural studies and conductivity of [Fe(O3C4)(COO)]·H2O based H4btec (H4btec = 1,2,4,5-benzenetetracarboxylic acid)


A new metal-organic hybrid compound [Fe(O3C4)(COO)]·H2O I has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Rust crystals crystallize in the monoclinic system, space group I2/a, a = 6.9651(2) A, b = 8.12630(10) A, c = 19.4245(2) A, β = 92.6600(10)°; V = 1098.25(4) A3; Z = 2 and Dx =3.63g/cm3. The refinement converged into R = 0.042; Rw = 0.058. The structure, determined by single crystal X-ray diffraction, consists of a network of FeO6 centers, octahedral coordinated by btec (btec = 1,2,4,5-benzenetetracarboxylic acid) anions giving rise to a two-dimensional sheet structure. In the compound I, [Fe(O3C4)(COO)]·H2O, the FeO6 group bridged by the 1,2,4,5-benzenetetracarboxyl anion exist in a unit cell, with each anion lying about an inversion centre. One of the FeO2 adistance [1.965(2)] significantly corresponds to the shortest distance as the other and the distances found in the axial direction of compound I.

Share and Cite:

Halouani, M. , Abdelhedi, M. , Dammak, M. , Audebrand, N. and Ktari, L. (2013) Structural studies and conductivity of [Fe(O3C4)(COO)]·H2O based H4btec (H4btec = 1,2,4,5-benzenetetracarboxylic acid). Open Journal of Inorganic Chemistry, 3, 100-108. doi: 10.4236/ojic.2013.34012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] O’Keeffe, M., Peskov, M. A., Ramsden S. J. and Yaghi O. M. (2008) The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Accounts of Chemical Research, 41, 1782-1789.
[2] Wang, Z. and Cohen, S.M. (2009) Postsynthetic modification of metal-organic frameworks. Chemical Society Reviews, 38, 1315-1329.
[3] Yaghi, O.M., O’Keeffe, M., Ockwing, N.W., Chae, H.K., Eddaoudi, M. and Kim, J. (2003) Reticular synthesis and the design of new materials. Nature, 42, 3705-3714.
[4] Yang, W.B., Lin, X., Jia, J.H., Blake, A.J., Wison, C., Hubberstey, P., Champness, N.R. and Schroder, M. (2008) A biporous coordination framework with high H2 storage density. Chemical Communications, 359-361.
[5] Lee, Y.G., Moon, H.R., Cheon, Y.E. and Suh, M.P. (2008) A comparison of the H2 sorption capacities of isostructural metal-organic frameworks with and without accessible metal sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc) (dmf)2}3] versus [{Cu2(abtc)}3]. Angewandte Chemie International Edition, 47, 7741-7745.
[6] Liu, Y.L., Eubank, J.F., Cairns, A.J., Eckert, J., Kravtsow, V.C., Luebke, R. and Eddaoudi, M. (2007) Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: A porous MOF with soc topology and high hydrogen storage. Angewandte Chemie International Edition, 46, 3278-3283.
[7] McManus, G.J., Wang, Z.Q., Beauchamp, D.A. and Zaworotko, M.J. (2007) A novel metal-organic ternary topology constructed from triangular, square and tetrahedral molecular building blocks. Chemical Communications, 5212-5213.
[8] Perry IV, J.J., Perman, J.A. and Zaworotko, M.J. (2009) Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chemical Society Reviews, 38, 1400-1417.
[9] Qiu, Y.C., Deng, H., Yang, S., Mou, J., Daiguebonne, C., Kerbellec, N., Guillou, O. and Batten, S.R. (2009) Syntheses, crystal structures, and gas storage studies in new three-dimensional 5-aminoisophthalate praseodymium polymeric complexes. Inorganic Chemistry, 48, 3976-3981.
[10] Li,B. K., Olson, D.H., Lee, J.Y., Bi, W., Yuen, T., Xu, Q. and Li, J. (2008) Multifunctional microporous MOFs exhibiting gas/hydrocarbon adsorption selectivity, separation capability and three-dimensional magnetic ordering. Advanced Functional Materials, 18, 2205-2214.
[11] Cheng, P., Yan, S.P., Xie, C.Z., Zhao, B., Chen, X.Y., Liu, X.W., Li, C.H., Liao, D.Z., Jiang, Z.H. and Wang, G.L. (2004) Ferromagnetic and antiferromagnetic polymeric complexes with the macrocyclic ligand 1,4,7-triazacyclononane. European Journal of Inorganic Chemistry, 2004, 2369-2378.
[12] Liu, H.Y., Zhao, B., Shi, W., Zhang, Z.J., Cheng, P., Liao, D.Z. and Yan, S.P. (2009) A chiral metal-organic framework based on heptanuclear zinc cores. European Journal of Inorganic Chemistry, 2009, 2599-2602.
[13] Janiank, C. (2003) Engineering coordination polymers towards applications. Dalton Transactions, 2781-2804.
[14] Kitagawa, S. and Uemura, K. (2005) Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chemical Society Reviews, 34, 109-119.
[15] Shen, W.Z., Chen, X.Y., Cheng, P., Yan, S.P., Zhai, B., Liao, D.Z. And Jiang, Z.H. (2005) A structural and magnetic investigation of ferromagnetically coupled copper(II) isophthalates. European Journal of Inorganic Chemistry, 2005, 2297-2305.
[16] Zhao, X.Q., Zuo, Y., Gao, D.L., Zhao, B., Shi, W. and Cheng, P. (2007) Pillared 3d-4f frameworks with rare 3D architecture showing the coexistence of ferromagnetic and antiferromagnetic interactions between gadolinium ions. Crystal Growth & Design, 7, 851-853.
[17] Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.Z., Yan, S.P., Jiang, Z.H. and Wang, G.L. (2003) A nanotubular 3d coordination polymer based on a 3d-4f heterometallic assembly. Angewandte Chemie International Edition, 42, 934-936.
[18] Wang, R.H., Hong, M.C., Luo, J.H., Cao, R. and Weng, J.B. (2003) A new type of three-dimensional framework constructed from dodecanuclear cadmium(II) macrocycles. Chemical Communications, 8, 1018-1019.
[19] Vaidhyanathan, R., Natarajan, S. and Rao, C.N.R. (2002) Three-dimensional open-framework neodymium oxalates with organic functional groups protruding in 12-member channels. Inorganic Chemistry, 41, 4496-4501.
[20] Cerdeira, A.C., Sim, D., Santos, I.C., Machado, A. and Pereira, L.C.J. (2008) (n-Bu4N)[Fe(cbdt)2]: Synthesis, crystal structure and magnetic characterisation of a new FeIII bisdithiolene complex. Inorganica Chimica Acta, 361, 3836-3840.
[21] Yamada, T. and Kitagawa, H. (2009) Protection and deprotection approach for the introduction of functional groups into metal-organic frameworks. Journal of the American Chemical Society, 131, 6312-6313.
[22] Fang, M., Zhao, B., Zuo, Y., Chen, J., Shi, W., Liang, J. and Cheng, P. (2009) Unique two-fold interpenetration of 3D microporous 3d-4f heterometal-organic frameworks (HMOF) based on a rigid ligand. Dalton Transactions, 7765-7770.
[23] Mavrandonakis, A., Klontzas, E., Tylianakis, E. and Froudakis, G.E. (2009) Enhancement of hydrogen adsorption in metal-organic frameworks by the incorporation of the sulfonate group and Li cations. A multiscale computational study. Journal of the American Chemical Society, 131, 13410-13414.
[24] Manna, S.C., Zangrando, E., Ribas, J. and Chaudhuri, N.R. (2007) Cobalt(II)-(dpyo)-dicarboxylate networks: unique H-bonded assembly and rare bridging mode of dpyo in one of them [dpyo = 4,4’-dipyridyl N,N’-dioxide]. Dalton Transactions, 1383-1391.
[25] Wang, X. S., Ma, S., Sun, D. F., Parkin, S. and Zhou, H. C. (2006) A Mesoporous metal-organic framework with permanent porosity. Journal of the American Chemical Society, 128, 16474-16475.
[26] Chung, H. T., Tsai, H. L., Yang, E. C., Chien, P. H., Peng, C. C., Huang, Y. C. and Liu, Y. H. (2009) A new manganese coordination polymer containing 1,2,4-benzenetricarboxylic acid. European Journal of Inorganic Chemistry, 3661-3666.
[27] Shekhah, O., Wang, H., Zacher, D., Fischer, R.A. and Woll, C. (2009) Growth mechanism of metal-organic frameworks: Insights into the nucleation by employing a step-by-step route. Angewandte Chemie International Edition, 48, 5038-5041.
[28] Ma, S., Simmons, J.M., Sun, D.F., Yuan, D.Q. and Zhou, H.C. (2009) Porous metal-organic frameworks based on an anthracene derivative: Syntheses, structure analysis, and hydrogen sorption studies. Inorganic Chemistry, 48, 5263-5268.
[29] Hong, S., Oh, M., Park, M., Yoon, J.W., Chang, J.S. and Lah, M.S. (2009) Metal-organic frameworks (MOFs) constructed from ZnII/CdII-2,2’-bipyridines and polycarboxylic acids: Synthesis, characterization and microstructural studies. Chemical Communications, 5397-5399.
[30] Prajapati, R., Mishra, L., Kimura, K. and Raghavaiah, P. (2009) Metal-organic frameworks (MOFs) Constructed from ZnII/CdII-2,2’-bipyridines and polycarboxylic acids: Synthesis, characterization and microstructural studies. Polyhedron, 28, 600-608.
[31] Li, H., Eddaoudi, M., Groy, T.L. and Yaghi, O.M. (1998) Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4- benzenedicarboxylate). Journal of the American Chemical Society, 120, 8571-8572.
[32] Reineke, T.M., Eddaoudi, M., Fehr, M., Kelley, D. and Yaghi, O.M. (1999) From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites. Journal of the American Chemical Society, 121, 1651-1657.
[33] Groeneman, R.H., MacGillivray, L.R. and Atwood, J.L. (1998) Aromatic inclusion within a neutral cavitycontaining rectangular grid. Chemical Communications, 2735-2736.
[34] Groeneman, R.H., MacGillivray, L.R. and Atwood, J.L. (1999) One-dimensional coordination polymers based upon bridging terephthalate ions. Inorganic Chemistry, 38, 208-209.
[35] Yaghi, O.M., Li, H. and Groy, T.L. (1999) Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid. Journal of the American Chemical Society, 118, 9096-9101
[36] Yaghi, O.M., Li, G. and Li, H. (1995) Selective binding and removal of guests in a microporous metal-organic framework. Nature, 378, 703-706.
[37] Yaghi, O.M., Davis, C.E., Li, G. and Li, H. (1997) Selective guest binding by tailored channels in a 3-d porous zinc(II)-benzenetricarboxylate network. Journal of the American Chemical Society, 119, 2861-2868.
[38] Kepert, C.J. and Rosseinsky, M.J. (1998) A porous chiral framework of coordinated 1,3,5-benzenetricarboxylate: Quadruple interpenetration of the (10,3)—A network. Chemical Communications, 31-32.
[39] Platers, M.J., Howie, R.A. and Roberts, A.J. (1997) Hydrothermal synthesis and X-ray structural characterization ofcalcium benzene-1,3,5-tricarboxylate. Chemical Communications, 893-894.
[40] Choi, H.J. and Suh, M.P. (1998) Self-assembly of molecular brick wall and molecular honeycomb from nickel (II) macrocycle and 1,3,5-benzenetricarboxylate: Guest-dependent host structures. Journal of the American Chemical Society, 120, 10622-10628.
[41] Choi, H.J., Lee, T.S. and Suh, M.P. (1999) Self-assembly of a molecular floral lace with one-dimensional channels and inclusion of glucose. Angewandte Chemie International Edition, 38, 1405-1408.<1405::AID-ANIE1405>3.0.CO;2-H
[42] Yaghi, O.M. and Li, H. (1996) T-shaped molecular building units in the porous structure of Ag(4,4‘-bpy)·NO3. Journal of the American Chemical Society, 118, 295-296.
[43] Deakin, L., Arif, A.M. and Miller, J.S. (1999) Observation of ferromagnetic and antiferromagnetic coupling in 1-D and 2-D extended structures of copper(II) terephthalates. Inorganic Chemistry, 38, 5072-5077.
[44] St. Foreman, J.M.R., Gelbrich, T., Hursthouse, M.B. and Plater, M.J. (2000) Hydrothermal synthesis and characterization of lead(II) benzene-1,3,5-tricarboxylate [Pb3BTC2]·H2O: A lead(II) carboxylate polymer. Inorganic Chemistry Communications, 3, 234-238.
[45] Li, H., Davis, C.E., Groy, T.L., Kelley, D.G. and Yaghi, O.M. (1998) Coordinatively unsaturated metal centers in the extended porous framework of Zn3(BDC)3·6CH3OH (BDC=1,4-benzenedi-carboxylate). Journal of the American Chemical Society, 120, 2186-2187.
[46] Chen, B., Eddaoudi, M., Reineke, T.M., Kampf, J.W., Keeffe, M.O. and Yaghi, O.M. (2000) Cu2(ATC)·6H2O: Design of open metal sites in porous metal—Organic crystals (ATC: 1,3,5,7-adamantane tetracarboxylate). Journal of the American Chemical Society, 122, 11559-11560.
[47] Robl, C. and Hentschel, S. (1991) On dicobaltpyromellitate-octadecahydrate (Co2[C6H2(COO)4]·18H2O)—A compound with the novel chain-like polyanion Co(H2O)4 [C6H2(COO)4]2n-n. Materials Research Bulletin, 26, 1355-1362.
[48] Poleti, D. and Karanovic, L. (1989) Structure of hexaaquacobalt(II) catena-tetraaqua [1,2,4,5-benzenetetracarboxylato(4-)]-cobaltate(II) 7.36-hydrate. Acta Crystallographica Section C, 45, 1716-1718.
[49] Ward, D.L. and Leuhrs, D.C. (1983) Hexaaquacobalt(II) dihydrogen 1,2,4,5-benzenetetracarboxylate, [Co(H2O)6] [C10H4O8]. Acta Crystallographica Section C, 39, 1370-1372.
[50] Robl, C. (1992) Water clustering in the zeolite-like channel structure of Na2Zn[C6H2(COO)4]·9H2O. Materials Research Bulletin, 22, 99-107.
[51] Poleti, D., Stojakovic, D.R., Prelesnik, B.V. and Herak, R.M. (1988) Structure of binuclear hexaaqua[1,2,4,5-benzenetetracarboxylato(4-)]-bis(ethylenediamine)dinickel(II) tetrahydrate. Acta Crystallographica Section C, 44, 242-245.
[52] Jessen, S.M. and Kuppers, H. (1990) The structure of dilithium dihydrogen 1,2,4,5-benzenetetracarboxylate tetrahydrate (dilithium dihydrogen pyromellitate tetrahydrate). Acta Crystallographica Section C, 46, 2351-2354.
[53] Chu, D., Xu, J., Duan, L., Wang, T., Tang, A. and Ye, L. (2001) Hydrothermal synthesis of a two-dimensional coordination polymer [Fe(phen)(μ6-bta)1/2]n (bta = benzene-1,2,4,5-tetracarboxylate, phen=1,10-phenanthroline). European Journal of Inorganic Chemistry, 2001, 1135-1137.<1135::AID-EJIC1135>3.0.CO;2-G
[54] Rochon, F.D. and Massarweh, G. (2001) Study of the aqueous reactions of metallic ions with benzenetetracarboxylate ions: Part 2. Crystal structures of compounds of the type M(H2O)5(μ-C6H2(COO)4)M(H2O)5 (M=Mn and Co) and a novel mixed-metallic Mn-Co dimeric compound. Inorganica Chimica Acta, 314, 163-171.
[55] Plater, M.J., St. Foreman, J.M.R., Howie, R.A., Skakle, J.M.S. and Slawin, A.M.Z. (2001) Hydrothermal synthesis of polymeric metal carboxylates from benzene1, 2,4,5-tetracarboxylic acid and benzene-1,2,4-tricarboxylic acid. Inorganica Chimica Acta, 315, 126-132.
[56] Usubaliev, B.T., Shnulin, A.N. and Mamadow, H.S. (1982) Molecular and crystal structure of tetra-aquobis(pyridine)-tetra(p-nitrobenzoato)dicopper (II). Journal of Structural Chemistry September, 23, 760-764.
[57] Robl, C. (1987) Komplexe mit aromatischen carbonsauren. I Darstellung und struktur von zinkpyromellitat-heptahydrat. Zeitschrift für anorganische und allgemeine Chemie, 554, 79-86.
[58] Zou, J.Z., Liu, Q., Xu, Z., You, X.Z. and Huang, X.Y. (1998) TCB bridged binuclear and polynuclear copper(II) complexes: A novel three dimension-network structure complex [(Cudien)2(Cudien·H2O)TCB (ClO4)2·H2O]n (TCB= tetracarboxylatobenzene, dien=3-azapentane-1,5-diamine). Polyhedron, 17, 1863-1869.
[59] Jessen, S.M. Kuppers, H. and Luehrs, D.C. (1992) Hy- drogen-bonding in acid litetrabutylammonium, nitetrabutylammonium, tetrabutylammonium, and ammonium-salts of benzene-1,2,4,5-tetracarboxylic acid (pyromellitic acid). Zeitschrift Fur Naturforschung Section B—A Journal of Chemical Sciences, 47, 1141-1153.
[60] Karanovic, L., Poleti, D., Bogdanovic, G.A. and Spasojevic-de Bire, A. (1999) Disodium hexaaquacobalt (II) bis [1,2,4,5-dihydrogénophosphate benzenetetracarboxylate (2-)] tétrahydraté. ACTA Crystallographica Section de Communications C—Structure Cristalline, 55, 911-913.
[61] Zhang, B., Jin, Z.S., Wang, Y.L., Wei, G.C. and Chen, W.Q. (1992) Syntheses and crystal structures of benzyl- and cyclopentyl-cyclopentadienyl sodium tetra-hydrofuranate complexes. Jiegou Huaxue, 8, 15-20.
[62] Chaudhuri, P., Oder, K., Wieghardt, K., Gehring, S., Haase, W., Nuber, B. and Weiss, J. (1988) Moderately strong intramolecular magnetic exchange interaction between the copper(II) ions separated by 11.25 .ANG. in [L2Cu2(OH2)2(.eta.-terephthalato)](ClO4)2 (L = 1,4,7-trimethyl-1,4,7-triazacyclononane). Journal of the American Chemical Society, 110, 3657-3658.
[63] Jaber, F., Charbonnier, F. and Faure, R. (1997) Crystal structure of a silver(I) complex with the 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid). Journal of Chemical Crystallography, 27, 397-400.
[64] Chen, W., Heng Tioh, N., Zou, J.-Z., Xu, Z. and You, X.-Z. (1996) A Tetracarboxylatobenzene-Bridged Binuclear Copper(II) Complex. Acta Crystallographica Section C, 52, 43-45.
[65] Luehrs, D.C. and Day, C.S. (1988) The crystal structure of thallium(I) 1,2,4,5-benzenetetracarboxylate. Inorganica Chimica Acta, 142, 201-202.
[66] Vitillo, J.G., Regli, L., Chavan, S., Ricchiardi, G., Spoto, G., Dietzel, P.D.C., Bordiga, S. and Zecchina, A. (2008) Role of exposed metal sites in hydrogen storage in MOFs. Journal of the American Chemical Society, 130, 8386-8396.
[67] Wang, Y.B., Zhuang, W.J., Jin, L.P. and Lu, S.Z. (2005) New lanthanide coordination polymers of 1,2,4,5-benzenetetracarboxylic acid and 4,4’-bipyridine with 1D channels. Journal of Molecular Structure, 737, 165-172.
[68] Cheng, D., Khan, M.A. and Houser, R.P. (2002) Novel sandwich coordination polymers composed of cobalt(II), 1,2,4,5-benzenetetracarboxylato ligands, and homopiperazonium cations. Crystal Growth & Design, 2, 415-420.
[69] Ding, M.T., Wu, J.Y., Liu, Y.H. and Lu, K.L. (2009) Dissolution/reorganization toward the destruction/construction of porous cobalt(II)- and nickel(II)-carboxylate coordination polymers. Inorganic Chemistry, 48, 7457-7465.
[70] Caskey, S.R. and Matzger, A.J. (2008) Selective metal substitution for the preparation of heterobimetallic microporous coordination polymers. Inorganic Chemistry, 47, 7942-7944.
[71] Cheng, D., Khan, M.A. and Houser, R.P. (2003) Nickel(II) and manganese(II) 1D chain coordination polymers with 1,2,4,5-benzenetetracarboxylato anions. Inorganica Chimica Acta, 351, 242-250.
[72] Xiao, D.R., Wang, E.B., An, H.Y., Li, Y.G., Su, Z.M. and Sun, C.Y. (2006) A bridge between pillared-layer and helical structures: A series of three-dimensional pillared coordination polymers with multiform helical chains. Chemistry, 12, 2680-2691.
[73] Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K. and Watkin, D.J. (2003) Software for guided crystal structure analysis. Journal of Applied Crystallography, 36, 1487.
[74] Brandenburg, K. and Berndt, M. (1999) Diamond. Crystal impact Gb R, Bonn, Germany, Version 2.1.b.
[75] Cao, R., Sun, D.F., Liang, Y.C., Hong, M.C., Tatsumi, K., Shi, Q. (2002) Syntheses and characterizations of three-dimensional channel-like polymeric lanthanide complexes constructed by 1,2,4,5-benzenetetracarboxylic acid. Inorganic Chemistry, 41, 2087-2094.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.