Analysis of the arginine biosynthetic gene cluster argCJBDFR of Corynebacterium crenatum
Haitao Jiao, Yong Yuan, Yonghua Xiong, Xuelan Chen
.
DOI: 10.4236/jbise.2011.41009   PDF    HTML     4,364 Downloads   8,334 Views   Citations

Abstract

Objective: Corynebacterium crenatum AS1.542, a Gram-positive bacterium and indigenous nonpatho-genic corynebacteria, is widely exploited for the in-dustrial production of amino acids. The objective of this paper is to clarify the genetic information of the arginine biosynthetic pathway, and further more contribute to the improvement of arginine produc-tion. Methods: Polymerase chain reaction (PCR) technology was employed for obtaining the arginine biosynthetic gene sequence, and softwares eg. Laser-gene, BPROM, RNAshapes were used for the analysis of obtained sequences. Results: Arginine biosynethetic gene cluster of C. crenatum, comprising argJ, argB, argD, argF, argR and part of argC, has been ampli-fied and sequenced. The gene order has been estab-lished as argCJBDFR, with a entire length of 6.08kb. Conclusion: An internal promoter was found in the upstream of argB gene, four argBDFR ORFs are lo-cated in a same transcription unit, and the tran-scripiton termination of argC gene is irrelevant with the rho-factor. Comparison with ornithine acetyl-transferase (coded by argJ gene) from C. glutamate, ornithine acetyltransferase from C. crenatum also belongs to the monofunctional enzymes.

Share and Cite:

Jiao, H. , Yuan, Y. , Xiong, Y. and Chen, X. (2011) Analysis of the arginine biosynthetic gene cluster argCJBDFR of Corynebacterium crenatum. Journal of Biomedical Science and Engineering, 4, 70-75. doi: 10.4236/jbise.2011.41009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Gigot, D., Caplier, I., Str Vehary, S., Pavel, P., Michele, L. and Osberg, D. (1987) Amino-proximal sequences of the argF and argI ornithine carbamoyltransferases from Escherichia coli K-12. Archives Internationales de Physiologie de Biochimie et de Biophysique, 86, 913-915.
[2] Sakanyan, V., Petrosyan, P., Lecocq, M., Boyen, A., Legrain, C., Demarez, M., Hallet, J.N. and Glansdorff, N. (1996) Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: Enzyme evolution in the early steps of the arginine pathway. Microbiology, 142, 99-108. doi:10.1099/13500872-142-1-99
[3] Unin, R. and Glansdorff, N. (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiology Reviews, 50, 314-352.
[4] Haas, D. and Kurer, V. (1982) N-acetylglutamate synthetase of Pseudomonas aeruginosa. An assay in vitro and feedback inhibition by arginine. European Journal of Biochemistry, 31, 290-295. doi:10.1111/j.1432-1033.1972.tb02531.x
[5] Heimberg, H., Boyen, A., Crabeel, M. and Glansdorff, N. (1990) Escherichia coli and Saccharomyces cerevisiae acetylornithine aminotransferase: Evolutionary relationship with ornithine aminotransferase. Gene, 90, 69-78.
[6] Hindle, Z. and Callis, R. (1994) Cloning and expression in Enterobacteria coli of a Streptomyces coelicolor A3(2) argCJB gene cluster. Microbiology, 140, 311-320. doi:10.1099/13500872-140-2-311
[7] Shengdong, L. (1999) Experiment technology of molecule biology. China Consonancy Medical University Publishing Company, Beijing.
[8] Maas, W.K. (1994) The arginine repressor of Escherichia coli. Microbiology Reviews, 58, 631-640.
[9] Miller, C.M., Baumberg, S. and Stockley, P. G. (1997) Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: Novel positioning and DNA- mediated assembly of a transcriptional activator at catabolic sites. Molecular Microbiology, 26, 37-48. doi:10.1046/j.1365-2958.1997.5441907.x
[10] Rodriguez-Garcia, A., Ludovice, M., Martin, J.F. and Liras, P. (1997) Arginine boxes and the argR gene in Streptomyces clavuligerus: Evidence for a clear regulation of the arginine pathway. Molecular Microbiology, 25, 219-228. doi:10.1046/j.1365-2958.1997.4511815.x
[11] Maghnouj, A. and Sousa, C.T.F. (1998) The arcABDC gene cluster, encoding the arginine deiminase pathway of Bacillus licheniformis, and its activation by the arginine repressor argR. Journal of Bacteriology, 180, 6468-6475.
[12] Dion, M. and Chalier, D. (1997) The highly thermostable arginine repressor of Bacillus stearothermophilus: gene cloning and repressor-operator interactions. Molecular Microbiology, 25, 385-398. doi:10.1046/j.1365-2958.1997.4781845.x
[13] Kira, S.M., Andrey, A.M. and Mikhail S.G. (2001) Conservation of the binding site for the arginine repressor in all bacterial lineages. Genome Biology, 2, 0013.1-0013.8.
[14] Cerde?o-Tárraga, A.M., Efstratiou, A., Dover, L.G., Holden, M.T., Pallen, M., Bentley, S.D., Besra, G.S., Churcher, C., James, K.D., De Zoysa, A., Chillingworth, T., Cronin, A., Dowd, L., Feltwell, T., Hamlin, N., Holroyd, S., Jagels, K., Moule, S., Quail, M.A., Rabbinowitsch, E., Rutherford, K.M., Thomson, N.R., Unwin, L., Whitehead, S., Barrell, B.G. and Parkhill, J. (2003) The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Research, 22, 6516-6523.
[15] Nishio, Y., Nakamura, Y., Kawarabayasi, Y., Usuda, Y., Kimura, E., Sugimoto, S., Matsui, K., Yamagishi, A., Kikuchi, H., Ikeo, K. and Gojobori, T. (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Research, 13, 1572- 1579. doi:10.1101/gr.1285603
[16] Cole, S.T., Brosch, R., Parkhill J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K. and Gas, T. F. S. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393, 537-544. doi:10.1038/31159
[17] Schell, M.A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B., Pessi, G., Zwahlen, M.C., Desiere, F., Bork, P., Delley, M., Pridmore, R.D. and Arigoni, F. (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proceedings of the National Academy of Sciences of the United States of America, 99, 14422-14427. doi:10.1073/pnas.212527599
[18] Parkhill, J., Achtman, M., Bentley, S.D., Churcher, C., Klee, S.R., Morelli, G., Basham, D., Brown, D., Chillingworth, T., Davies, R.M., Davis, P., Devlin, K., Feltwell, T., Hamlin, N., Holroyd, S., Jagels, K., Leather, S., Moule, S., Mungall, K., Quail, M.A., Rajandream, M.A., Rutherford, K.M., Simmonds, M., Skelton, J., Whitehead, S., Spratt, B.G. and Barrell, B.G. (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature, 404, 502-506. doi:10.1038/35006655
[19] Ghochikyan, A., Karaivanova, I.M., Lecocq, M., Vusio, P., Arnaud, M.C., Snapyan, M., Weigel, P., Guével, L., Buckle, M. and Sakanyan, V. (2002) Arginine Operator Binding by Heterologous and Chimeric ArgR Repressors from Escherichia coli and Bacillus stearothermophilus. J Bacteriol, 184, 6602-6614. doi:10.1128/JB.184.23.6602-6614.2002

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.