Triple-Aspect Monism and the Ontology of Quantum Particles

DOI: 10.4236/ojpp.2013.34066   PDF   HTML     7,485 Downloads   13,909 Views   Citations


An analysis of the physical implications of abstractness reveals the reality of three interconnected modes of existence: abstract, virtual and concrete. This triple-aspect monism clarifies the ontological status of subatomic quantum particles. It also provides a non-spooky solution to the weirdness of quantum physics and a new outlook for the mind-body problem. The ontological implications are profound for both physics and philosophy.

Share and Cite:

Côté, G. (2013). Triple-Aspect Monism and the Ontology of Quantum Particles. Open Journal of Philosophy, 3, 451-454. doi: 10.4236/ojpp.2013.34066.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Aspect, A., Grangier, P., & Roger, G. (1982). Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s inequalities. Physical Review Letters, 49, 91-94.
[2] Baez, J. (2011). What’s the energy density of the vacuum?
[3] Casimir, H. B. G. (1948). On the attraction between two perfectly conducting plates. Proceedings of the Koninklijke Nederlandse Akademie van Wentenschappen, B51, 793-795.
[4] Collini, E., Wong, C. Y., Wilk, K. E., Curmi, P. M. G., Brumer, P., & Scholes, G. D. (2010). Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature, 463, 644-647.
[5] Coté, G. B. (2013). Mathematical Platonism and the nature of infinity. Open Journal of Philosophy, 3, 372-375.
[6] Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777-780.
[7] Engel, G. S., Calhoun, T. R., Read, E. L., Ahn, T.-K., Mancal, T., Cheng, Y.-C., Blankenship, R. E., & Fleming, G. R. (2007). Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature, 446, 782-786.
[8] Gaasbeek, B. (2010). Demystifying the delayed choice experiments.
[9] Garisto, R. (2002). What is the speed of quantum information?
[10] Gauger, E.M., Rieper, E., Morton, J.J.L., Benjamin, S.C., & Vedral, V. (2011). Quantum coherence and entanglement in the avian compass. Physical Review Letters, 106, 040503.
[11] Gilder, L. (2008). The age of entanglement. When quantum physics was reborn. New York: Knopf.
[12] Gleick, J. (2011). The information. A history, a theory, a flood. New York: Vintage Books.
[13] Hawking, S. W. (1974). Black hole explosions? Nature, 248, 30-31.
[14] Kaiser, F., Coudreau, T., Milman, P., Ostrowsky, D. B., & Tanzilli, S. (2012). Entanglement-enabled delayed-choice experiment. Science, 338, 637-640.
[15] Lamb, W. E., & Retherford, R. C. (1947). Fine structure of the hydrogen atom by a microwave method. Physical Review, 72, 241-243.
[16] Pereira Jr., A., Edwards, J. C. W., Lehmann, D., Nunn, C., Trehub, A., & Velmans, M. (2010). Understanding consciousness. A collaborative attempt to elucidate contemporary theories. Journal of Consciousness, 17, 213-219.
[17] Peruzzo, A., Shadbolt, P., Brunner, N., Popescu, S., & O’Brien, J. (2012). A quantum delayed-choice experiment. Science, 338, 634637.
[18] Rugh, S. E., & Zinkernagel, H. (2002). The quantum vacuum and the cosmological constant problem. Studies in History and Philosophy of Science, Part B: Studies in History and Philosophy of Modern Physics, 33, 663-705.
[19] Salart, D., Baas, A., Branciard, B., Gisin, N., & Zbinden, H. (2008). Testing the speed of “spooky action at a distance”. Nature, 454, 861864.
[20] Seife, C. (2006). Decoding the universe. How the science of information is explaining everything in the cosmos, from our brains to black holes. New York, Toronto, London: Penguin Group.
[21] Umpleby, S. A. (2007). Physical relationships among matter, energy and information. Systems Research and Behavioral Science, 24, 369-372.
[22] Vedral, V. (2010). Decoding reality. The universe as quantum information. Oxford: Oxford University Press.
[23] Wilson, C. M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J. R., Duty, T., Nori, F., & Delsing, P. (2001). Observation of the dynamical Casimir effect in a superconducting circuit. Nature, 479, 376-379.
[24] Young, T. (1804). The Bakerian lecture. Experiments and calculations relative to physical optics. Philosophical Transactions of the Royal Society of London, 94, 1-16.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.