[1]
|
P. Borjesson and B. Mattiasson, “Biogas as a Resource-Efficient Vehicle Fuel,” Trends Biotechnology, Vol. 26, No. 1, 2008, pp. 7-13.
http://dx.doi.org/10.1016/j.tibtech.2007.09.007
|
[2]
|
H. J. Park, M. K. Song and C. K. Na, “Pretreatment Efficiency of Piggery Wastewater Using Coagulation-MAP Sedimentation,” Journal of Korea Society of Waste Management, Vol. 27, 2010, pp. 457-466.
|
[3]
|
Y. M. Yoon, Y. J. Kim and C. H. Kim, “The Evaluation of Economical Efficiency to Composting and Liquefying Process of Biomass Discharged in Pig Breeding,” Agriculture Economics, Vol. 31, 2009, pp. 39-62.
|
[4]
|
D. Bolzonella, L. Innocenti, P. Pavan, P. Traverso and F. Cecchi, “Semi-Dry Thermophilic Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Focusing on the Start-Up Phase,” Bioresource Technology, Vol. 86, No. 2, 2003, pp. 123-129.
http://dx.doi.org/10.1016/S0960-8524(02)00161-X
|
[5]
|
P. Pavan, P. Battistoni and J. Mata-Alvarez, “Performance of Thermophilic Semi-Dry Anaerobic Digestion Process Changing the Feed Biodegradability,” Water Science and Technology, Vol. 41, 2000, pp. 75-81.
|
[6]
|
N. Forster-Carneiro, M. Perez and L. I. Romero, “Anaerobic Digestion of Municipal Solid Wastes: Dry Thermophilic Performance,” Bioresource Technology, Vol. 99, No. 17, 2008, pp. 8180-8184.
http://dx.doi.org/10.1016/j.biortech.2008.03.021
|
[7]
|
B. Montero, J. L. Garcia-Morales, D. Sales and R. Solera, “Analysis of Methanogenic Activity in a Thermophilicdry Anaerobic Reactor: Use of Fluorescent in Situ Hybridization,” Waste Management, Vol. 29, No. 3, 2009, pp. 1144-1151. http://dx.doi.org/10.1016/j.wasman.2008.08.010
|
[8]
|
S. E. Oh, M. K. Lee and D. H. Kim, “Continuous Meso-philic-Dry Anaerobic Digestion of organic Solid Waste,” Journal of Korean Society of Environmental Engineers, Vol. 31, 2009, pp. 341-345.
|
[9]
|
J. J. Lay, Y. Y. Li and T. Noike, “Development of Bacterial Population and Methanogenic Activity in a Laboratory-Scale Landfill Bioreactor,” Water Research, Vol. 32, No. 12, 1998, pp. 3673-3679.
http://dx.doi.org/10.1016/S0043-1354(98)00137-7
|
[10]
|
W. F. Owen, D. C. Stuckey, J. B. Healy, L. Y. Young and P. L. McCarty, “Bioassay for Monitoring Biochemical Methane Potential and Anaerobic Toxicity,” Water Research, Vol. 13, No. 6, 1979, pp. 485-492.
http://dx.doi.org/10.1016/0043-1354(79)90043-5
|
[11]
|
R. S. Daniel and J. M. Tiedje, “General Method for Determining Anaerobic Biodegradation Potential,” Applied and Environmental Microbiology, Vol. 47, 1984, pp. 850-857.
|
[12]
|
I. Angelidaki, M. Alves, D. Bolzonella, L. Borzacconi, J. L. Campos, A. J. Guwy, S. Kaalyuzhnyi, P. Jenicek and J. B. van Lier, “Defining the Biomethane Potential (BMP) of Solid Organic Wastes and Energy Crops: A Proposed Protocol for Batch Assays,” Water Science and Technology, Vol. 59, No. 5, 2009, pp. 927-934.
http://dx.doi.org/10.2166/wst.2009.040
|
[13]
|
M. H. Zwietering, I. Jongenburger, F. M. Rombouts and K. van’t Riet, “Modeling of the Bacterial Growth Curve,” Applied and Environmental Microbiology, Vol. 56, No. 6, 1990, pp. 1875-1881.
|
[14]
|
T. L. Hansen, J. E. Schmidt, I. Angelidaki, E. Marca, J. Cour Jansen, H. Mosboek and T. H. Christensen, “Method for Determination of Methane Potentials of Solid Organic Waste,” Waste Management, Vol. 24, No. 4, 2004, pp. 393-400.
http://dx.doi.org/10.1016/j.wasman.2003.09.009
|
[15]
|
H. B. Mollera, S. G. Sommera and B. K. Ahringb, “Methane Productivity of Manure, Straw and Solid Fractions of Manure,” Biomass and Bioenergy, Vol. 26, No. 5, 2004, pp. 485-495.
http://dx.doi.org/10.1016/j.biombioe.2003.08.008
|
[16]
|
J. K. Park, S. R. Jeong, J. H. Kang, Y. M. Ahn, H. E. Jin and N. H. Lee, “A Study on Optimization Condition for Anaerobic Co-Digestion of Food Waste with Livestock Wastes,” Journal of Korea Society of Waste Management, Vol. 29, 2012, pp. 356-364.
|
[17]
|
S. H. Kim, H. C. Kim, C. H. Kim and Y. M. Yoon, “The Measurement of Biochemical Methane Potential in the Several Organic Waste Resources,” Korean Journal of Soil Science and Fertilizer, Vol. 43, 2010, pp. 356-362.
|
[18]
|
S. Aslanzadeh, M. J. Taherzadeh and I. S. Horvath, “Pretreatment of Straw Fraction of Manure for Improved Biogas Production,” Bio-Resources, Vol. 6, 2011, pp. 5193-5205.
|
[19]
|
J. G. Lin, Y. S. Ma, A. C. Chao and C. L. Huang, “BMP Tests on Chemically Pretreated Sludge,” Bioresources Technology, Vol. 68, No. 2, 1999, pp. 187-192.
http://dx.doi.org/10.1016/S0960-8524(98)00126-6
|
[20]
|
P. Shanmugam and N. J. Horan, “Simple and Rapid Methods to Evaluate Methane Potential and Biomass Yield for a Range of Mixed Solid Wastes,” Bioresource Technology, Vol. 100, No. 1, 2008, pp. 471-474.
http://dx.doi.org/10.1016/j.biortech.2008.06.027
|
[21]
|
D. Jackowiak, D. Bassard, A. Pauss and T. Ribeiro, “Optimization of a Microwave Pretreatment of Wheat Straw for Methane Production,” Bioresource Technology, Vol. 102, No. 12, 2011, pp. 6750-6756.
http://dx.doi.org/10.1016/j.biortech.2011.03.107
|
[22]
|
J. C Converse, R. E. Graves and G. W. Evans, “Anaerobic Degradation of Dairy Manure under Mesophilic and Thernophilic Temperatures,” Transactions of the ASAE, Vol. 20, 1977, pp. 336-340.
|
[23]
|
J. E. Robbins, M. T. Armold and S. L. Lacher, “Methane Production from Cattle Waste and Delignified Strawt,” Infection and Immunity, Vol. 38, 1979, pp. 175-177.
|