[1]
|
R. M. Anderson and R. M. May, “Population Biology of Infectious Diseases I,” Nature, Vol. 280, 1979, pp. 361367. http://dx.doi.org/10.1038/280361a0
|
[2]
|
R. M. May and R. M. Anderson, “Population Biology of Infectious Diseases II,” Nature, Vol. 280, 1979, pp. 455461. http://dx.doi.org/10.1038/280455a0
|
[3]
|
H. W. Hethcote and P. van den Driessche, “An SIS EpiDemic Model with Variable Population Size and a Delay,” Journal of Mathematical Biology, Vol. 34, No. 2, 1995, pp. 177-194.
http://dx.doi.org/10.1007/BF00178772
|
[4]
|
F. Chamchod and N. F. Britton, “Analysis of a VectorBias Model on Malaria Transmission,” Bulletin of Mathematical Biology, Vol. 73, No. 3, 2011, pp. 639-657.
http://dx.doi.org/10.1007/s11538-010-9545-0
|
[5]
|
K. L. Cooke and P. van den Driessche, “Analysis of an SEIRS Epidemic Model with Two Delays,” Journal of Mathematical Biology, Vol. 35, No. 2, 1996, pp. 240-260.
http://dx.doi.org/10.1007/s002850050051
|
[6]
|
Y. Takeuchi, W. Ma and E. Beretta, “Global Asymptotic Properties of a Delay SIR Epidemic Model with Finite Incubation Times,” Nonlinear Analysis, Vol. 42, No. 6, 2000, pp. 931-947.
http://dx.doi.org/10.1016/S0362-546X(99)00138-8
|
[7]
|
J. Mena-Lorca and H. W. Hetheote, “Dynamic Models of Infectious Diseases as Regulators of Population Sizes,” Journal of Mathematical Biology, Vol. 30, No. 7, 1992, pp. 693-716.
|
[8]
|
B. K. Mishra and D. K. Saini, “SEIRS Epidemic Model with Delay for Transmission of Malicious Objects in Computer Network,” Applied Mathematics and Computation, Vol. 188, No. 2, 2007, pp. 1476-1482.
http://dx.doi.org/10.1016/j.amc.2006.11.012
|
[9]
|
M. Y. Li, J. R. Graef, L. Wang and J. Karsai, “Global Dynamics of a SEIR Model with Varying Total Population Size,” Mathematical Biosciences, Vol. 160, No. 2, 1999, pp. 191-213.
http://dx.doi.org/10.1016/S0025-5564(99)00030-9
|
[10]
|
M. Gabriela, M. Gomes, L. J. White and G. F. Medley, “The Reinfection Threshold,” Journal of Theoretical Biology, Vol. 236, No. 1, 2005, pp. 111-113.
http://dx.doi.org/10.1016/j.jtbi.2005.03.001
|
[11]
|
Z. Jiang and J. Wei, “Stability and Bifurcation Analysis in a Delayed SIR Model,” Chaos, Solitons & Fractals, Vol. 35, No. 3, 2008, pp. 609-619.
http://dx.doi.org/10.1016/j.chaos.2006.05.045
|
[12]
|
T. Zhang and Z. Teng, “Global Behavior and Permanence of SIRS Epidemic Model with Time Delay,” Nonlinear Analysis: Real World Applications, Vol. 9, No. 4, 2008, pp. 1409-1424.
http://dx.doi.org/10.1016/j.nonrwa.2007.03.010
|
[13]
|
V. Capasso and G. Serio, “A Generalization of the Kermack-Mckendrick Deterministic Epidemic Model,” Mathematical Biosciences, Vol. 42, No. 1-2, 1978, pp. 41-61.
http://dx.doi.org/10.1016/0025-5564(78)90006-8
|
[14]
|
A. Kaddar, “On the Dynamics of a Delayed SIR Epidemic Model with a Modified Saturated Incidence Rate,” Journal of Differential Equations, Vol. 2009, No. 133, 2009, pp. 1-7.
|
[15]
|
R. Xu and Z. Ma, “Global Stability of a SIR Epidemic Model with Nonlinear Incidence Rate and Time Delay,” Nonlinear Analysis: Real World Applications, Vol. 10, No. 5, 2009, pp. 3175-3189.
http://dx.doi.org/10.1016/j.nonrwa.2008.10.013
|
[16]
|
A. Kaddar, A. Abta and H. T. Alaoui, “Stability Analysis in a Delayed SIR Epidemic Model with a Saturated Incidence Rate,” Nonlinear Analysis: Modelling and Control, Vol. 15, No. 3, 2010, pp. 299-306.
|
[17]
|
A. Abta, A. Kaddar and H. T. Alaoui, “Global Stability for Delay SIR and SEIR Epidemic Models with Saturated Incidence Rates,” Journal of Differential Equations, Vol. 2012, No. 23, 2012, pp. 1-13.
|
[18]
|
H. Wei, X. Li and M. Martcheva, “An Epidemic Model of a Vector-Borne Disease with Direct Transmission and Time Delay,” Journal of Mathematical Analysis and Applications, Vol. 342, No. 2, 2008, pp. 895-908.
http://dx.doi.org/10.1016/j.jmaa.2007.12.058
|
[19]
|
R. Xu and Z. Ma, “Global Stability of a Delayed SEIRS Epidemic Model with Saturation Incidence Rate,” Nonlinear Dynamics, Vol. 61, No. 1, 2010, pp. 229-239.
http://dx.doi.org/10.1007/s11071-009-9644-3
|
[20]
|
R. Xu, Z. Ma and Z. Wang, “Global Stability of a Delayed SIRS Epidemic Model with Saturation Incidence Rate and Temporary,” Computers & Mathematics with Applications, Vol. 59, No. 9, 2010, pp. 3211-3221.
http://dx.doi.org/10.1016/j.camwa.2010.03.009
|
[21]
|
H. Huo and Z. Ma, “Dynamics of a Delayed Epidemic Model with Non-Monotonic Incidence Rate,” Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 2, 2010, pp. 459-468.
|
[22]
|
R. Xu and Z. Ma, “Stability of a Delayed SIRS Epidemic Model with a Nonlinear Incidence Rate,” Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2319-2325.
http://dx.doi.org/10.1016/j.chaos.2008.09.007
|