Fatty Acids Composition and Biodiesel Characterization of Dunaliella salina


This study discusses the perspectives regarding the green alga Dunaliella salina Toed for biodiesel manufacturing purposes. The alga was cultivated under controlled lab conditions. Biomass concentration at early stationary grown microalga was 2.6 mg/L dry weight, while the algal oil was about 27.1% of the biomass. Algal oil was esterified and analyzed using GLC technique. Fourteen fatty acid methyl esters were identified. The amount of saturated and unsaturated fatty ester fractions was 35% and 65% respectively. The physicochemical properties of fatty acids comprising biodiesel were discussed. However, culture optimization coupled with genetic improvement will definitely represent contributions to bring about innovation in oil hyper-producing D. salina that will ultimately meet with success.

Share and Cite:

E. Fakhry and D. Maghraby, "Fatty Acids Composition and Biodiesel Characterization of Dunaliella salina," Journal of Water Resource and Protection, Vol. 5 No. 9, 2013, pp. 894-899. doi: 10.4236/jwarp.2013.59091.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Gavrilescu and Y. Chisti, “Biotechnology—A Sustainable Alternative for Chemical Industry,” Biotechnology Advances, Vol. 23, No. 7-8, 2005, pp. 471-499. doi:10.1016/j.biotechadv.2005.03.004
[2] P. Spolaore, C. Joannis-Cassan, E. Duran and A. Isambert, “Commercial Applications of Microalgae,” Journal of Bioscience and Bioengineering, Vol. 101, No. 2, 2006, pp. 87-96. doi:10.1263/jbb.101.87
[3] A. S. Fedorov, S. Kosourov, M. L. Ghirardi and M. Seibert, “Continuous H2 Photoproduction by Chlamydomonas Reinhardtii Using a Novel Two-Stage, Sulfate-Limited Chemostat System,” Applied Biochemistry and Biotechnology, Vol. 121, No. 1-3, 2005, pp. 403-412. doi:10.1385/ABAB:121:1-3:0403
[4] I. K. Kapdan and F. Kargi, “Bio-Hydrogen Production from Waste Materials,” Enzyme and Microbial Technology, Vol. 38, No. 5, 2006, pp. 569-582. doi:10.1016/j.enzmictec.2005.09.015
[5] A. Banerjee, R. Sharma, Y. Chisti and U. C. Banerjee, “Botryococcus Braunii: A Renewable Source of Hydrocarbons and Other Chemicals,” Critical Reviews in Biotechnology, Vol. 22, No. 3, 2002, pp. 245-279. doi:10.1080/07388550290789513
[6] G. Huang, F. Cheng, D. Wei, X. Zhang and G. Chen, “Biodiesel Production by Microalgal Technology,” Applied Energy, Vol. 87, No. 1, 2010, pp. 38-46. doi:10.1016/j.apenergy.2009.06.016
[7] L. Brennan and P. Owende, “Biofuels from Microalgae— A Review of Technologies of Production, Processing and Extraction of Biofuels and Co-Products,” Renewable and Sustainable Energy Reviews, Vol. 14, No. 2, 2010, pp. 557-577. doi:10.1016/j.rser.2009.10.009
[8] M. M. Phukan, S. R. Chutia, B. K. Konwar and R. Kataki, “Microalgae Chlorella as a Potential Bio-Energy Feedstock,” Applied Energy, Vol. 88, No. 10, 2011, pp. 3307-3312. doi:10.1016/j.apenergy.2010.11.026
[9] A. Demirbas, “Progress and Recent Trends in Biodiesel Fuels,” Energy Conversion and Management, Vol. 50, No. 1, 2009, pp. 14-34. doi:10.1016/j.enconman.2008.09.001
[10] K. Bozbas, “Biodiesel as an Alternative Motor Fuel: Production and Policies in the European Union,” Renewable and Sustainable Energy Reviews, Vol. 12, No. 2, 2008, pp. 542-552. doi:10.1016/j.rser.2005.06.001
[11] G. Knothe, J. Van Gerpen and J. Krahl, “The Biodiesel Handbook,” AOCS Press, Champaign, 2005, p. 302. doi:10.1201/9781439822357
[12] J. M. Marchetti, V. U. Miguel and A. E. Errazu, “Possible Methods for Biodiesel Production,” Renewable and Sustainable Energy Reviews, Vol. 11, No. 6, 2007, pp. 1300-1311. doi:10.1016/j.rser.2005.08.006
[13] Y. C. Sharma and B. Singh, “Development of Biodiesel: Current Scenario,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 6-7, 2009, pp. 1646-1651. doi:10.1016/j.rser.2008.08.009
[14] D. H. Lee, “Algal Biodiesel Economy and Competition among Bio-Fuels,” Bioresource Technology, Vol. 102, No. 1, 2011, pp. 43-49. doi:10.1016/j.biortech.2010.06.034
[15] I. A. Guschina and J. L. Harwood, “Lipids and Lipid Metabolism in Eukaryotic Algae,” Progress in Lipid Research, Vol. 45, No. 2, 2006, pp. 160-186. doi:10.1016/j.plipres.2006.01.001
[16] N. G. Mohammady, “Characterization of the Fatty Acid composition of Nannochloropsis Salina as a Determinant of Biodiesel Properties,” Zeitschrift fur Naturforshung, Vol. 66c, No. 7/8, 2011, pp. 328-332. doi:10.5560/ZNC.2011.66c0328
[17] J. Sheehan, T. Dunahay, J. Benemann and P. Roessler, “A Look Back at the US Department of Energy’s Aquatic Species Program: Biodiesel from Algae,” NREL/TP580-24190, National Renewable Energy Laboratory, 1998. doi:10.2172/15003040
[18] Y. Chisti, “Biodiesel from Microalgae,” Biotechnology Advances, Vol. 25, No. 3, 2007, pp. 294-306. doi:10.1016/j.biotechadv.2007.02.001
[19] Y. Li, B. Wang, N. Wu and C. Q. Lan, “Effects of Nitrogen Sources on Cell Growth and Lipid Production of Neochloris oleoabundans,” Applied Microbiology and Biotechnology, Vol. 81, No. 4, 2008, pp. 629-636. doi:10.1007/s00253-008-1681-1
[20] Y. Li, M. Horsman, N. Wu, C. Q. Lan and N. Dubois-Calero, “Biofuels from Microalgae,” Biotechnology Progress, Vol. 24, No. 4, 2008, pp. 815-820.
[21] J. Qin, “Bio-Hydrocarbons from Algae: Impacts of Temperature, Light and Salinity on Algae Growth,” Rural Industries Research and Development Corporation Report, Adelaide SA Australia: Barton ACT: RIRDC, 2005.
[22] H. Tang, N. Abunasser, M. E. D. Garcia, M. Chen, K. Y. Simon Ng and S. O. Salley, “Potential of Microalgae Oil from Dunaliella tertiolecta as a Feedstock for Biodiesel,” Applied Energy, Vol. 88, No. 10, 2011, pp. 3324-3330. doi:10.1016/j.apenergy.2010.09.013
[23] L. A. Loeblich, “Photosynthesis and Pigments Influenced by Light Intensity and Salinity in the Holophilic Dunaliella salina (Chlorophyta),” Journal of the Marine Biological Association of the United Kingdom, Vol. 62, No. 3, 1982, pp. 493-508. doi:10.1017/S0025315400019706
[24] E. G. Bligh and W. J. Dyer, “A Rapid Method of Total Lipid Extraction and Purification,” Canadian Journal of Biochemistry and Physiology, Vol. 37, No. 8, 1959, pp. 911-917. doi:10.1139/o59-099
[25] W. W. Christie, “Gas Chromatography Mass Spectrometry Methods for Structural Analysis of Fatty Acids,” Lipids, Vol. 33, No. 4, 1998, pp. 343-351. doi:10.1007/s11745-998-0214-x
[26] L. Rodolfi, G. C. Zittelli, N. Bassi, G. Padovani, N. Biondi and G. Bonini, “Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor,” Biotechnology and Bioengineering, Vol. 102, No. 1, 2009, pp. 100-112. doi:10.1002/bit.22033
[27] Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz and M. Seibert, “Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances,” The Plant Journal, Vol. 54, No. 4, 2008, pp. 621-639. doi:10.1111/j.1365-313X.2008.03492.x
[28] S. K. Hoekman, A. Broch, C. Bins, E. Ceniceros and M. Natarajan, “Review of Biodiesel Composition, Properties, and Specifications,” Renewable and Sustainable Energy Reviews, Vol. 16, No. 1, 2012, pp. 143-169. doi:10.1016/j.rser.2011.07.143
[29] M. J. Griffiths and S. T. L. Harrison, “Lipid Productivity as a Key Characteristic for Choosing Algal Species for Biodiesel Production,” Journal of Applied Phycology, Vol. 21, No. 5, 2009, pp. 493-507. doi:10.1007/s10811-008-9392-7
[30] G. Knothe, “Designer Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties,” Energy and Fuels, Vol. 22, No. 2, 2008, pp. 1358-1364. doi:10.1021/ef700639e
[31] C. J. Chuck, C. D. Bannister, J. G. Hawley, M. G. Davidson, I. La Bruna and A. Paine, “Predictive Model to Assess the Molecular Structure of Biodiesel Fuel,” Energy and Fuels, Vol. 23, No. 4, 2009, pp. 2290-2294. doi:10.1021/ef801085s
[32] M. Balat, “Modeling Vegetable Oil Viscosity,” Energy Source Part A, Vol. 30, No. 20, 2008, pp. 1856-1869. doi:10.1080/15567030701457392
[33] A. Tabernero, E. M. Martín del Valle and M. A. Galán, “Evaluating the Industrial Potential of Biodiesel from a Microalgae Heterotrophic Culture: Scale-Up and Economics,” Biochemical Engineering Journal, Vol. 63, 2011, pp. 104-115. doi:10.1016/j.bej.2011.11.006
[34] T. Gouw, J. Vlugter and C. Roelands, “Physical Properties of Fatty Acid Methyl Esters: VI. Viscosity,” Journal of the American Chemists Society, Vol. 43, No. 7, 1966, pp. 433-434.
[35] M. Balat and H. Balat, “Progress in Biodiesel Processing,” Applied Energy, Vol. 87, No. 6, 2010, pp. 1815-1835. doi:10.1016/j.apenergy.2010.01.012
[36] L. F. Ramírez-Verduzco, J. E. Rodríguez-Rodríguez and A. R. Jaramillo-Jacob, “Predicting Cetane Number, Kinematic Viscosity, Density and Higher Heating Value of Biodiesel from Its Fatty Acid Methyl Ester Composition,” Fuel, Vol. 91, No. 1, 2012, pp. 102-111. doi:10.1016/j.fuel.2011.06.070
[37] G. Knothe, “Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters,” Fuel Processing Technology, Vol. 86, No. 10, 2005, pp. 1059-1070. doi:10.1016/j.fuproc.2004.11.002
[38] P. M. Schenk, S. R. Thomas-Hall, E. Stephens, U. C. Marx, J. H. Mussgnug, C. Posten, O. Kruse and B. Hankamer, “Second Generation Biofuels: High-Efficiency for Biodiesel Production,” Bioenergy Research, Vol. 1, No. 1, 2008, pp. 20-43. doi:10.1007/s12155-008-9008-8
[39] M. J. Ramos, C. M. Fernandez, A. Casas, L. Rodriguez and A. Perez, “Influence of Fatty Acid Composition of Raw Materials on Biodiesel Properties,” Bioresource Technology, Vol. 100, No. 1, 2009, pp. 261-268. doi:10.1016/j.biortech.2008.06.039
[40] M. Jorge Pratas, S. V. D. Freitas, M. B. Oliveira, S. C. Monteiro, A. S. Lima and J. A. P. Coutinho, “Biodiesel Density: Experimental Measurements and Prediction Models,” Energy and Fuels, Vol. 25, No. 5, 2011, pp. 2333-2340. doi:10.1021/ef2002124
[41] T. H. Gouw and J. C. Vlugter, “Physical Properties of Fatty Acid Methyl Esters. I. Density and Molar Volume,” Journal of the American Chemists Society, Vol. 41, No. 2, 1964, pp. 142-145.
[42] B. R. Moser and S. F. Vaughn, “Efficacy of Fatty Acid Profile as a Tool for Screening Feedstocks for Biodiesel Production,” Biomass and Bioenergy, Vol. 37, 2012, pp. 31-41. doi:10.1016/j.biombioe.2011.12.038
[43] B. R. Moser, “Biodiesel Production, Properties and Feedstocks. In Vitro Cellular and Developmental Biology,” Plants, Vol. 45, No. 3, 2009, pp. 229-266.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.