Functional Copolymer/Organo-MMT Nanoarchitectures. VIII. Synthesis, Morphology and Thermal Behavior of Poly(maleic anhydride-alt-acrylamide)-Organo-MMT Clays Nanohybrids

DOI: 10.4236/eng.2011.31009   PDF   HTML     4,929 Downloads   10,116 Views   Citations


Functional copolymer–clay hybrids were synthesized by radical-initiated intercalative copolymerization of maleic acid (MA) and acrylamide (AAm) with 2,2’-azobis (2-methylpropionamidine) dihydrochloride as a water-soluble ionizable radical initiator in the presence of reactive (octadecyl amine (ODA)-MMT) and non-reactive (dimethyldodecyl ammonium (DMDA)-MMT) organoclays at 50oC in aqueous medium under nitrogen atmosphere. The monomers was dissolved in aqueous medium, as well as both used clay particles were easily dissolved and dispersed with partially swollen in deionized water, respectively. Structure, thermal behavior and morphology of the synthesized nanocomposites were investigated by FTIR, XRD, DSC-TGA, SEM and TEM analysis methods, respectively. It was demonstrated that intercalative copolymerization proceed via ion exchange between organoclays and carboxylic groups of monomers/polymers which essentially improved interfacial interaction of polymer matrix and clay layers through strong H-bonding. In case of intercalative copolymerization in the presence of ODA-MMT clay, similar improvement was provided by in situ hydrogen-bonding and amidolysis of carboxylic/anhydride groups from copolymer chains with primary amine group of ODA-MMT. The nanocomposites exhibit higher intercalation/exfoliation degree of copolymer chains, improved thermal properties and fine dispersed morphology.

Share and Cite:

Z. Rzayev, B. Şenol and E. Soylemez, "Functional Copolymer/Organo-MMT Nanoarchitectures. VIII. Synthesis, Morphology and Thermal Behavior of Poly(maleic anhydride-alt-acrylamide)-Organo-MMT Clays Nanohybrids," Engineering, Vol. 3 No. 1, 2011, pp. 73-82. doi: 10.4236/eng.2011.31009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. B. Hendricks, “Base Exchange of the Clay Mineral Montmorillonite for Organic Cations and Its Dependence upon Absorption due to Wander-Waals Forces,” Journal of Physical Chemistry, Vol. 45, 1941, pp. 65-81. doi:10. 1021/j150406a006
[2] A. Weiss, “Organic Derivatives of Mica-Type Layer Silicates,” Angewandte Chemie International Edition, Vol. 2, No. 3, March 1963, pp. 134-144. doi:10.1002/anie. 196301341
[3] B. K. G. Theng, “The Che-mistry of Clay-Organic Reactions,” Wiley, New York, 1974.
[4] A. C. D. Newman, “Chemistry of Clays and Clay Materials,” Mineralogical Society Monograph, No. 6, Wiley, New York, 1987.
[5] Y. Komori and K. Kuroda, “Poly-mer-Layered Silicate Nanocomposies,” In: T. J. Pinnavaia, C. W. Beall, Eds., Wiley, New York, 2000.
[6] M. Alexandre and P. Dubois, “Polymer-Layered Siliate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials,” Material Science and Engi- neering R, Vol. 28, No. 1, 2000, pp. 1-63. doi:10.1016/ S0927-796X(00)00012-7
[7] S. S. Ray and M. Okamoto, “Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing,” Progress in Polymer Science, Vol. 28, No. 11, 2003, pp. 1539-1641. doi:10.1016/j.progpolymsci.2003.08.002
[8] S. C. Tjong, “Structural and Echanical Properties of Polymer Nanocomposites,” Material Science and Engi- neering R, Vol. 53, No. 3-4, 2006, pp. 73-197. doi:10. 1016/j.mser.2006.06.001
[9] Q. H. Zeng, D. Z. Wang and G. Q. Lu, “Synthesis of Polymer–Montmorillonite Nanocomposites by in Situ Intercalative Polymerization,” Nanotechnology, Vol. 13, No. 5, 2002, pp. 549-553. doi:10.1088/0957-4484/13/5/3 01
[10] G. D. Liu, L. C. Zhang, D. G. Zhao and X. G. Qu, “Bulk Polymerization of Styrene in the Presence of Organo- modified Montmorillonite,” Journal of Applied Polymer Science, Vol. 96, No. 4, May 2005, pp. 1146-1152. doi:10. 1002/app.21559
[11] M. Biswas and S. S. Ray, “Preparation and Evaluation of Composites from Montmorillonite and Some Heterocyclic Polymers. 1: Poly (N-Vinyl Carbazole)-Montmorillo- nite Nanocomposite System,” Polymer, Vol. 39, 1998, pp. 6423- 6428. doi:10.1016/S0032-3861(97)10366-4
[12] H. Z. Friedlander, “Spontaneous Polymerization in and on Clay,” American Chemical Society (ACS Division), Polymer Chemistry Reprints, Vol. 4, 1963, pp. 300-306.
[13] D. H. Solomon and B. C. Loft, “Reactions Catalyzed by Minerals. Part III. The Mechanism of Spontaneous Interlamellar Polymerizations in Aluminosilicates,” Journal of Applied Polymer Science, Vol. 12, No. 5, 1968, pp. 1253- 1262. doi:10.1002/app.1968.070120523
[14] A. Nese, S. Sen, M. A. Tasdelen, N. Nugay and Y. Yagci, “Clay-PMMA Nanocomposites by Photoinitiated Radical Polymerization Using Intercalated Phenacyl Pyridinium Salt Initiators,” Macromolecular Chemistry and Physics, Vol. 207, No. 9, May 2006, pp. 820-825. doi:10.1002/ macp.200500511
[15] L. M. Stadtmueller, K. R. Ratinac and S. P. Ringer, “The Effects of Intragallery Polymerization on the Structure of PMMA–Clay Nanocomposites,” Polymer, Vol. 46, 2005, pp. 9574-9584. doi:10.1016/j.polymer.2005.08.036
[16] Y. Sugahara, S. Sa-tokawa, K. Kuroda and C. Kato, “Evidence for the Formation of Interlayer Polyacrylonitrile in Kaolinite”, Clays and Clay Minerals, Vol. 36, No. 4, 1988, pp. 343-348. doi:10.1346/CCMN.1988.0360408
[17] H. M. Li and H. B. Chen, “Synthesis and Characterization of Poly (N-n-Butylmaleimide)–Clay Nanocomposites,” Material Letters, Vol. 57, No. 20, June 2003, pp. 3000-3004. doi:10.1016/S0167-577X(02)01420-9
[18] C. Vaysse, L. Guerlou-Demourgues, C. Delmas and E. Duguest, “Tentative Mchanisms for Acrylate Intercalation and in Situ Polymerization in Nickel-Based Layered Double Hydroxides,” Macromolecules, Vol. 37, No. 1, 2004, pp. 45-51. doi:10.1021/ma025882w
[19] C. Vaysse, L. Guer-lou-Demourgues, E. Duguet and C. Delmas, “Acrylate Interca-lation and in Situ Polymerization in Iron-, Cobalt-, or Manga-nese-Substituted Nickel Hydroxides,” Inorganic Chemistry, Vol. 42, No. 15, 2003, pp. 4559-4567. doi:10.1021/ic026229s
[20] L. Vieille, C. Taviot-Gueho, J. P. Besse and F. Leroux, “Hydrocalumite and Its Polymer Deriva-tives. 2. Polymer Incorporation versus in Situ Polymerization of Styrene-4-Sulfonate,” Chemistry of Materials, Vol. 15, 2003, pp. 4369-4376. doi:10.1021/cm031070i
[21] L. Vieille, E. M. Moujahid, C. Taviot-Gueho, J. Cellier, J. P. Besse and F. Le-roux, “In Situ Polymerization of Interleaved Monomers: a Comparative Study between Hydrotalcite and Hydrocalumite Host Structures,” Journal of Physical Chemistry in Solids, Vol. 65, No. 2-3, March 2004, pp. 385-393. doi:10.1016/j.jpcs.2003.08.029
[22] F. Yu, K. Yao, L. Shi, W. Wan, Q. Zhong, Y. Fu and X. You, “Investigation of Acrylic Acid Polymerization in Novel Two-Dimensional Molecular Space with Regular Amino Groups of Layered Aminopropylsi-lica,” Chemistry of Materials, Vol. 19, No. 14, 2007, pp. 3412-3418. doi:10.1021/cm070325f
[23] E. M. Moujahid, M. Dubois, J. P. Besse and F. Leroux, “Role of Atmospheric Oxy-gen for the Polymerization of Interleaved Aniline Sulfonic Acid in LDH,” Chemistry of Materials, Vol. 14, No. 9, 2002, pp. 3799-3807
[24] M. M. Al-Esaimi, “Reaction Catalyzed by Montmorillonite: Polymerization of Methyl Methacrylate,” Journal of Applied Polymer Science, Vol. 64, No. 2, April 1997, pp. 367-372. doi:10.1002/(SICI)1097-4628(19970411)64:2< 367::AID-APP18>3.3.CO;2-W
[25] G. D. Liu, L. C. Zhang, C. H. Gao and X. G. Qu, “Copolymerization of styrene with N-phenylmaleimide in the presence of montmorillonite,” Journal of Applied Polymer Science, Vol. 98, 2005, pp.1932-1937. doi:10.1002/ app.22364
[26] G. D. Liu, L. C. Zhang, X. G. Qu, P. Liu, L. Yang and C. H. Gao, “Thermal Analysis of Solution Copolymers of Styrene with N-Phenylmaleimide,” Journal of Applied Polymer Science, Vol. 83, No. 2, January 2002, pp. 417- 422. doi:10.1002/app.10065
[27] D. Wang, J. Zhu, Q. Yao and C. A. Wilkie, “A Comparison of Variuos Methods for the Preparation of Polypropylene and Poly (Methyl Methacrylate) Clay Nanocomposites,” Chemistry of Materials, Vol. 14, No. 9, 2002, pp. 3837-3843. doi:10.1021/cm011656+
[28] D. Wang, J. Zhu and C. A. Wilkie, “In Situ Reactive Blending to Prepare Poly (Styrene-Clay and Polypropylene-Clay Nanocomposites),” Polymer Degradation and Stabilization, Vol. 80, No. 1, 2003, pp. 171-182. doi:10. 1016/S0141-3910(02)00399-3
[29] Q. T. Nguyen and D. G. Baird, “Preparation of Polymer-Clay Nanocomposites and Their Properties,” Polymers for Advanced Technologies, Vol. 25, No. 4, Winter 2006, pp. 270-285. doi:10.1002/adv.20079
[30] E. S?ylemez, N. ?aylak and Z. M. O. Rzayev, “Func- tional Copolymer/Organo-Silicate Nanoarchitectures. III. Synthesis and Characterization of Poly (?taconic Acid-co- BMA)/Dodecyl Amine-MMT Nano-composites by ?nter- lamellar Copolymerization Method,” Express Polymer Letters, Vol. 2, 2008, pp. 639-654.
[31] Z. M. O. Rzayev, “Nanotechnology Methods in Polymer Engineering,” Proceedimgs of 4th Nanaoscience & Nano- technology Conference, June 2007, Bilkent, p. 154.
[32] Z. M. O. Rzayev, A. Guner, E. S?ylemez and S. Kavlak, “Functional Copolymer/Organo-MMT Nanoarchitectures. III. Dynamic Mechanical Behaviour of Poly (IA-co- BMA)-Organo-MMT Clay Nanocomposites,” Polymers for Advanced Technologies, 2010. doi:10,1002/pat.1618.
[33] J. F. Rabek, “Experimental Methods in Polymer Chemistry: Physical Principles and Applications,” John Wiley & Sons, New York, 1980, p. 507.
[34] R. Adhikri and G. H. Michler, “Polymer Nanocomposites Characterization by Microscopy,” Polymer Reviews, Vol. 49, No. 3, 2009, pp. 141-180. doi:10.1080/15583720903 048094
[35] O. Monticelli, Z. Musina, S. Russo and S. Bals, “On the Use of TEM in Characterization of Nanocomposites,” Material Letters, Vol. 61, 2007, pp. 3446-3450. doi:10. 1016/j.matlet.2006.11.086
[36] H. K. Can, A. L. Do?an, Z. M. O. Rzayev, A. H. Uner and A. Güner, “Synthesis and Antitumor Activity of Poly (3,4-Dihydro-2H-Pyran-Co-Maleicanhydride-Co-Vi-Nyla- cetate),” Journal of Applied Polymer Science, Vol. 96, 2005, pp. 2352-2359. doi:10.1002/app.21660
[37] Y. Cai, Y. Hu, J. Xiao, L. Song and W. Fan, “Morphology, Thermal and Mechanical Properties of Poly (Styrene-Acry-Lo-Nitrile) (SAN)/Clay Na-nocomposites from Organic-Modified Montmorillonite,” Polymer-Plastics Technology and Engineering, Vol. 46, No. 5, 2007, pp. 541-548. doi:10.1080/03602550701298655
[38] J. W. Gilman, C. L. Jakson, A. B. Morgan, et al., “Flammability Properties of Polymer-Layered-Silicate Nanocomposites: Poly-propylene and Polystyrene Nanocomposites,” Chemistry of Materials, Vol. 12, No. 7, 2000, pp. 1866-1873. doi:10.1021/cm0001760
[39] J. Lee, T. Takekoshi and E. P. Giannelis, “Fire Retardant Polyetherimide Nanocomposites,” Material Society Symposium Proceedings, Vol. 457, 1997, pp. 513-518.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.