Adsorption of F-, NO3- and SO42- on AFN Anionic Membrane: Kinetics and Thermodynamics Studies

Abstract

The sorption of and from aqueous solution on AFN membrane has been studied and the equilibrium isotherms determined. The experimental data have been analyzed using the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models at different temperatures varying from 283 to 313 K. The results were analyzed using three kinetic models, Lagergen first order, second order and the Elovich model. The obtained results show that the best-fit correlation of the experimental data was obtained using the second order model. Thermodynamic parameters for the adsorption system were determined at 283, 298 and 313 K.

Share and Cite:

C. Hannachi, F. Guesmi, W. Bouguerra and B. Hamrouni, "Adsorption of F-, NO3- and SO42- on AFN Anionic Membrane: Kinetics and Thermodynamics Studies," American Journal of Analytical Chemistry, Vol. 4 No. 9, 2013, pp. 501-509. doi: 10.4236/ajac.2013.49064.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Dron and A. Dodi, “Comparison of Adsorption Equilibrium Models for the Study of Cl-, NO3- and SO42- Removal from Aqueous Solutions by an Anion Exchange Resin,” Journal of Hazardous Materials, Vol. 190, No. 1-3, 2011, pp. 300-307. doi:10.1016/j.jhazmat.2011.03.049
[2] M. Chabani, A. Amrane and A. Bensmaili, “Kinetic Modelling of the Adsorption Nitrates by Ion Exchange Resin,” Chemical Engeneering Journal, Vol. 125, No. 2, 2006, pp. 111-117. doi:10.1016/j.cej.2006.08.014
[3] R. Haghsheno, A. Mohebbi, H. Hashemipour and A. Sarrafi, “Study of Kinetic and Fixed Bed Operation of Removal of Sulfate Anions from an Industrial Wastewater by an Anion Exchange Resin,” Journal of Hazardous Matererials, Vol. 166, No. 2-3, 2009, pp. 961-966. doi:10.1016/j.jhazmat.2008.12.009
[4] M. Islam and R. Patel, “Nitrate Sorption by Thermally Activated Mg/Al Chloride Hydrotalcite-Like Compound,” Journal of Hazardous Matererials, Vol. 169, No. 1-3, 2009, pp. 524-531. doi:10.1016/j.jhazmat.2009.03.128
[5] P. Calza and E. Pelizzetti, “Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Ions,” Pure and Applied Chemistry, Vol. 73, No. 12, 2001, pp. 1839-1848. doi:10.1351/pac200173121839
[6] L. Lv, J. He, M. Wei and X. Duan, “Uptake of Chloride ion from Aqueous Solution by Calcined layered Double Hydroxides: Equilibrium and Kinetic Studies,” Water Research, Vol. 40, No. 4, 2006, pp. 735-743. doi:10.1016/j.watres.2005.11.043
[7] P.A. Sule and J. D. Ingle, “Determination of the Speciation of Chromium with an Automated Two-Column Ion-Exchange System,” Journal of Analytica Chimica Acta, Vol. 326, No. 1-3, 1996, p. 85. doi:10.1016/0003-2670(96)00041-4
[8] D. M. Adria-Cerezo, A. R. Llobat-Estelles and A. R. Mauri-Aucejo, “Preconcentration and Speciation of Chromium in Waters Using Solid-Phase Extraction and Atomic Absorption Spectrometry,” Talanta, Vol. 51, No. 3, 2000, pp. 531-536. doi:10.1016/S0039-9140(99)00309-4
[9] H. Leinonen and J. Lehto, “Ion-Exchange of Nickel by Iminodiacetic Acid Chelating Resin Chelex 100,” Reactive and Functional Polymers, Vol. 43, No. 1-2, 2000, pp. 1-6.
[10] J. Lehto, R. Harjula, H. Leino-nen, A. Paajanen, T. Larila, K. Mononen and L. Saarinen, “Advanced Separation of Harmful Metals from Industrial Waste Effluents by ion Exchange,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 208, No. 2, 1996, pp. 435-443. doi:10.1007/BF02040060
[11] C. Simpson and S. H. Laurie, “Ion Exchange Studies on Zinc-Rich Waste Liquors,” Hydrometallurgy, Vol. 5l, No. 3, 1999, pp. 335. doi:10.1016/S0304-386X(98)00084-X
[12] W. Jeng-Shiou, L. Chia-Hung, Ch. Khim Hoong and S. Shing-Yi “Removal of Cationic Dye Methyl Violet 2B from Water by Cation Exchange Membranes,” Journal of Membrane Science, Vol. 309, No. 1-2, 2008, pp. 239-245. doi:10.1016/j.memsci.2007.10.035
[13] L. Chia-Hung, W. Jeng-Shiou, Ch. Hsin-Chieh, S. ShingYi and Ch. Khim Hoong, “Removal of Anionic Reactive Dyes from Water Using Anion Exchange Membranes as Adsorbers,” Water Research, Vol. 41, No. 7, 2007, pp. 1491-1500. doi:10.1016/j.watres.2007.01.023
[14] A. Demirbas, E. Pehlivan, F. Gode, T. Altun and G. Arslan, “Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from Aqueous Solution on Amberlite IR-120 Synthetic Resin,” Journal of Colloidal Interface Science, Vol. 282, No. 1, 2005, pp. 20-28.
[15] S. Rengaraj and S. H. Moon, “Kinetics of Adsorption of Co(II) Removal from Water and Wastewater by Ion Exchange Resins,” Water Research, Vol. 36, No. 7, 2002, pp. 1783-1793. doi:10.1016/S0043-1354(01)00380-3
[16] Z. Zainol and J. Michael, “Ion-Exchange Equilibria of Ni2+, Co2+, Mn2+ and Mg2+ with Iminodi Acetic Acid Chelating Resin Amberlite IRC 748,” Hydrometallurgy, Vol. 99, No. 3-4, 2009, pp. 175-180. doi:10.1016/j.hydromet.2009.08.004
[17] T. Shi, Z. Wang, Y. Liu, S. Jia and D. Changming, “Removal of Hexavalent Chromium from Aqueous Solutions by D301, D314 and D354 Anion-Exchange Resins,” Journal of Hazardous Matererials, Vol. 161, No. 2-3, 2009, pp. 900-906. doi:10.1016/j.jhazmat.2008.04.041
[18] M. Chabani, A. Amrane and A. Bensmaili, “Equilibrium Sorption Isotherms for Nitrate on Resin Amberlite IRA 400,” Journal of Hazardous Materials, Vol. 165, No. 2-3, 2009, pp. 27-33. doi:10.1016/j.jhazmat.2008.08.091
[19] M. Wawrzkiewicz and Z. Hubicki, “Removal of Tartrazine from Aqueous Solutions by Strongly Basic Polystyrene Anion Exchange Resins,” Journal of Hazardous Materials, Vol. 164, No. 2-3, 2009, pp. 502-509. doi:10.1016/j.jhazmat.2008.08.021
[20] T. Kusumaningsih, D. Jumina, Siswanta, K. Mustofa, Ohto and H. Kawakita, “Synthesis of Polytetra-p-allylcalix[4]Arene Tetra Acetic Acid Adsorbent for Cr(III) and Pb(II) Metal Ions,” International Journal of Technology, Vol. 2, 2012, pp. 93-102.
[21] S.-Y. Lin and S.-Y. Suen, “Protein Separation Using Plate-and Frame Modules with Ion-Exchange Membranes,” Journal of Membrane Science, Vol. 204, No. 1-2, 2002, pp. 37-51. doi:10.1016/S0376-7388(02)00015-7
[22] K. Do Hee, M. Seung-Hyeon and Ch. Jaeweon, “Investigation of the Adsorption and Transport of Natural Organic Matter (NOM) in Ion-Exchange Membranes,” Desalination, Vol. 151, No. 1, 2002, pp. 11-20.
[23] Ch. Hannachi, B. Hamrouni and M. Dhahbi, “Ion Exchange Equilibrium between Cation Exchange Membranes and Aqueous Solutions of K+/Na+, K+/Ca2+, and Na+/Ca2+,” Ionics, Vol. 15, 2009, pp. 445-451.
[24] Ch. Hannachi, M. Ben Sik Ali and B. Hamrouni, “Determination of the Selectivity Coefficient of the CMX Cationic Membrane at Various Ionic Strengths,” Desalination and Water Treatment, Vol. 10, No. 1-3, 2009, pp. 47-52. doi:10.5004/dwt.2009.725
[25] Membrane polymères échangeuses d’ions, “Caractérisation et Méthodes d’essai des Membranes Homopolaires,” Norme Fran-caise NF X 45-200, AFNOR, 1995.
[26] Le Xuan Tuan, C. Buess-Herman, “Study of Water Content and Microheterogeneity of CMS Cation Exchange Membrane,” Chemical Physics Letters, Vol. 434, No. 1-3, 2007, pp. 49-55.
[27] Tim Malewitz, P. N. Pintauro and D. Rear, “Multicomponent Absorption of Anions in Commercial Anion-Exchange Membranes,” Journal of Membrane Science, Vol. 301, No. 1-2, 2007, pp. 171-179. doi:10.1016/j.memsci.2007.06.014
[28] A. Dabrowski, “Adsorption from Theory to Practice,” Advances in Colloid and Interface Science, Vol. 93, No. 1-3, 2001, pp. 135-224. doi:10.1016/S0001-8686(00)00082-8
[29] Y. S. Ho and G. McKay, “The Kinetics of Sorption of Divalent Metal Ions onto Sphagnum Moss Peat,” Water Research, Vol. 34, No. 3, 2000, 735-742. doi:10.1016/S0043-1354(99)00232-8
[30] Y.S. Ho, “Review of Second-Order Models for Adsorption Systems,” Journal of Hazardous Materials, Vol. 136, No. 3, 2006, pp. 681-68. doi:10.1016/j.jhazmat.2005.12.043
[31] S. Tsz-Him, Ma. Anthony, K. C. Vinci Lee and M. Gordon, “Kinetics of Zinc Ions Removal from Effluents Using ion Exchange Resin,” Chemical Engineering Journal, Vol. 146, No. 1, 2009, pp. 63-70. doi:10.1016/j.cej.2008.05.019
[32] N. Dizge, B. Keskinler and H. Barlas, “Sorption of Ni(II) ions from Aqueous Solution by Lewatit Cation Exchange Resin,” Journal of Hazardous Materials, Vol. 167, No. 1-3, 2009, pp. 915-926. doi:10.1016/j.jhazmat.2009.01.073
[33] S. Meenakshi and V. Natrayasamy, “Identification of Selective Ion-Exchange Resin for Fluoride Sorption,” Journal of Colloid and Interface Science, Vol. 308, No. 2, 2007, pp. 438-450. doi:10.1016/j.jcis.2006.12.032
[34] H. Freundlich, “Over the Adsorption in Solution,” Journal of Physical Chemistry, Vol. 57, No. 25, 1906, pp. 385-471.
[35] I. Langmuir, “The Constitution and Fundamental Properties of Solid and Liquids-Part I, Solids,” Journal of the American Chemical Society, Vol. 40, No. 9, 1918, pp. 1361-1403. doi:10.1021/ja02242a004
[36] R. Donat, A. Akdogan, E. Erdem and H. Cetisli, “Thermodynamics of Pb2+ and Ni2+, Adsorption onto Natural Bentonite from Aqueous Solutions,” Journal of Colloid and Interface Science, Vol. 286, No. 1, 2005, pp. 43-52. doi:10.1016/j.jcis.2005.01.045
[37] M.I. Temkin, V. Pyzhev, “Kinetics of Ammonia Synthesis on Promoted Iron Catalyst,” Acta physival chemistry, Vol. 12, 1940, pp. 327-356.
[38] D. Kavitha, C. Namasivayam, “Experimental and Kinetic Studies on Methylene blueAdsorption by Coir Pith Carbon,” Bioresource Technology, Vol. 98, No. 1, 2010, pp. 14-21. doi:10.1016/j.biortech.2005.12.008
[39] E. Oguz, “Adsorption Characteristics and the Kinetics of the Cr (VI) on the Thuja Oriantalis,” Colloids and Surface, Vol. 252, No. 2-3, 2005, pp. 121-128. doi:10.1016/j.colsurfa.2004.10.004

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.