6-Azido-Galactosyl Imidate as a Building Block for Preparation of 1-(4-Aminobutyl)-, Di-, Tri- and Tetra-Saccharides

DOI: 10.4236/ojmc.2013.33010   PDF   HTML     4,444 Downloads   6,882 Views   Citations


6-azidogalactosyl imidate has been used as a donor to generate 1-(4-aminobutyl)-6-aminogalactose, 6-aminothiotolyl- glycosides of disaccharide, trisaccharide and tetrasaccharide that incorporates 6-azido group and 1-(4-tolyl)thio group. Trisaccharide and tetrasaccharide were obtained from lactosyl-based acceptor. The anomeric 1-(4-tolyl)thio group could be used to conjugate with sphingosine analogs to provide the alpha-Gal Sph analogs for library extension from the azido group.

Share and Cite:

K. Lin, L. Chiang, C. Pan, H. Huang, Y. Su, S. Chen, Y. Huang and C. Yu, "6-Azido-Galactosyl Imidate as a Building Block for Preparation of 1-(4-Aminobutyl)-, Di-, Tri- and Tetra-Saccharides," Open Journal of Medicinal Chemistry, Vol. 3 No. 3, 2013, pp. 74-86. doi: 10.4236/ojmc.2013.33010.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. J. Brennan, M. Brigl and M. B. Brenner, “Invariant Natural Killer T Cells: An Innate Activation Scheme Linked to Diverse Effector Functions,” Nature Reviews Immunology, Vol. 13, No. 2, 2013, pp. 107-117. doi:10.1038/nri3369
[2] M. J. Smyth, N. Y. Crowe, Y. Hayakawa, K. Takeda, H. Yagita and D. Godfrey, “NKT Cells—Conductors of Tumor Immunity?” Current Opinion in Immunology, Vol. 14, No. 2, 2002, pp. 165-171. doi:10.1016/S0952-7915(02)00316-3
[3] L. Zhang, F. Sun, Y. X. Li, X. Sun, X. M. Liu, Y. S. Huang, L. H. Zhang, X. S. Ye and J. Xiao, “Rapid Synthesis of Iminosugar Derivatives for Cell-Based in Situ Screening: Discovery of ‘Hit’ Compounds with Anticancer Activity,” ChemMedChem, Vol. 2, No. 11, 2007, pp. 1594-1597. doi:10.1002/cmdc.200700120
[4] G. T. Le, G. Abbenante, B. Becker, M. Grathwohl, J. Halliday, G. Tometzki, J. Zuegg and W. Meutermans, “Molecular Diversity through Sugar Scaffolds,” Drug Discovery Today, Vol. 8, No. 15, 2003, pp. 701-709. doi:10.1016/S1359-6446(03)02751-X
[5] B. Elchert, J. Li, J. H. Wang, Y. Hui, R. Rai, R. Ptak, P. Ward, J. Y. Takemoto, M. Bensaci and C. W. T. Chang, “Application of the Synthetic Aminosugars for Glycodiversification: Synthesis and Antimicrobial Studies of Pyranmycin,” The Journal of Organic Chemistry, Vol. 69, No. 5, 2004, pp. 1513-1523. doi:10.1021/jo035290r
[6] R. Liang, L. Yan, J. Loebach, M. Ge, Y. Uozumi, K. Sekanina, N. Horan, J. Gildersleeve, C. Thompson, A. Smith, K. Biswas, W. C. Still and D. Kahne, “Parallel Synthesis and Screening of a Solid Phase Carbohydrate Library,” Science, Vol. 274, No. 5292, 1996, pp. 1520- 1522. doi:10.1126/science.274.5292.1520
[7] D. L. Boger, J. Desharnais and K. Capps, “Solution-Phase Combinatorial Libraries: Modulating Cellular Signaling by Targeting Protein-Protein or Protein-DNA Interactions,” Angewandte Chemie International Edition, Vol. 42, No. 35, 2003, pp. 4138-4176. doi:10.1002/anie.200300574
[8] R. A. Houghten, “Parallel Array and Mixture-Based Synthetic Combinatorial Chemistry: Tools for the Next Millennium,” Annual Review of Pharmacology and Toxicology, Vol. 40, 2000, pp. 273-282. doi:10.1146/annurev.pharmtox.40.1.273
[9] L.-W. Chiang, K. Pei, S.-W. Chen, H.-L. Huang, K.-J. Lin, T.-C. Yen and C.-S. Yu, “Combining a Solution- Phase Derived Library with In-Situ Cellular Bioassay: Prompt Screening of Amide-Forming Minilibraries Using MTT Assay,” Chemical and Pharmaceutical Bulletin, Vol. 57, No. 7, 2009, pp.714-718. doi:10.1248/cpb.57.714
[10] K.-I Lin, C.-H. Yang, C.-W. Huang, J.-Y. Jian, Y.-C. Huang and C.-S. Yu, “Synthesis and Structure-Activity Relationships of Fenbufen Amide Analogs,” Molecules, Vol. 15, No. 12, 2010, pp. 8796-8803. doi:10.3390/molecules15128796
[11] Y.-H. Su, L.-W. Chiang, K.-C. Jeng, H.-L. Huang, J. Chen, W. Z. Lin, C.-W. Huang and C.-S. Yu, “Solution- Phase Parallel Synthesis and Screening of Anti-Tumor Activities from Fenbufen and Ethacrynic Acid Libraries,” Bioorganic & Medicinal Chemistry Letters, Vol. 21, No. 5, 2011, pp. 1320-1324. doi:10.1016/j.bmcl.2011.01.068
[12] Y.-C. Huang, L.-W. Chiang, K.-S. Chang, W.-C. Su, Y.-H. Lin, K.-C. Jeng, K.-I. Lin, K.-Y. Liao, H.-L. Huang and C.-S. Yu, “Synthesis of Amino Cores of Galactosyl Ceramide Analogs for Developing INKT-Cell Inducers,” Molecules, Vol. 17, No. 3, 2012, pp. 3058-3081.
[13] H.-L. Huang, C.-N. Yeh, K.-W. Chang, J. Chen, K.-J. Lin, L.-W. Chiang, K.-C. Jeng, W.-T. Wang, K.-H. Lim, C. G. Chen, K.-I. Lin, Y.-C. Huang, W.-J. Lin, T.-C. Yen and C.-S. Yu, “Synthesis and Evaluation of [18F]Fluorobutyl Ethacrynic Amide: A Potential PET Tracer for Studying Glutathione Transferase,” Bioorganic & Medicinal Chemistry Letters, Vol. 22, No. 13, 2012, pp. 3998-4003.
[14] H.-L. Huang, C.-N. Yeh, W.-Y. Lee, Y.-C. Huang, K.-W. Chang, K.-J. Lin, S.-F. Tien, W.-C. Su, C.-H. Yang, J.-T. Chen, W.-J. Lin, S.-S. Fan and C.-S. Yu, “[123I]Iodooctyl Fenbufen Amide as a SPECT Tracer for Imaging Tumors that Over-Express COX Enzymes,” Biomaterials, Vol. 34, No. 13, 2013, pp. 3355-3365.
[15] O. Plettenburg, V. Bodmer-Narkevitch and C. H. Wong, “Synthesis of Alpha-Galactosyl Ceramide, a Potent Immunostimulatory Agent,” The Journal of Organic Chemistry, Vol. 67, No. 13, 2002, pp. 4559-4564. doi:10.1021/jo0201530
[16] C. S. Yu, H. Y. Wang, L. W. Chiang and K. Pei, “Synthesis of the Rhamnosyl Trisaccharide Repeating Unit to Mimic the Antigen Determinant of Pseudomonas Syringae Lipopolysaccharide,” Synthesis, No. 9, 2007, pp. 1412-1420. doi:10.1055/s-2007-965995
[17] C. S. Yu, K. Niikura, C. C. Lin and C. H. Wong, “The Thioglycoside and Glycosyl Phosphite of 5-Azido Sialic Acid: Excellent Donors for the Alpha-Glycosylation of Primary Hydroxy Groups,” Angewandte Chemie International Edition, Vol. 40, No. 15, 2001, pp. 2900-2903. doi:10.1002/1521-3773(20010803)40:15<2900::AID-ANIE2900>3.0.CO;2-4
[18] Z. Y. Zhang, I. R. Ollmann, X. S. Ye, R. Wischnat, T. Baasov and C. H. Wong, “Programmable One-Pot Oligosaccharide Synthesis,” Journal of the American Chemical Society, Vol. 121, No. 4, 1999, pp. 734-753. doi:10.1021/ja982232s
[19] S. Y. Hsieh, M. D. Jan, L. N. Patkar, C. T. Chen and C. C. Lin, “Synthesis of a Carboxyl Linker Containing P-K Trisaccharide,” Carbohydrate Research, Vol. 340, No. 1, 2005, pp. 49-57. doi:10.1016/j.carres.2004.10.024
[20] A. Patel and T. K. Lindhorst, “Synthesis of ‘Mixed-Type’ Oligosaccharide Mimetics Based on a Carbohydrate Scaffold,” European Journal of Organic Chemistry, No. 1, 2002, pp. 79-86.
[21] C. S. Yu, C. H. Wu, L. W. Chiang and R. T. Wang, H. Y. Wang, C. H. Yeh and K. I. Lin, “Synthesis of (E)-5- (2-Radioiodovinyl)arabinosyl Uridine Analog for Probing HSV-1 Thymidine Kinase Gene,” Chemistry Letters, Vol. 34, No. 10, 2005, pp. 1390-1391. doi:10.1246/cl.2005.1390
[22] K.-I. Lin, L.-W. Chiang, C.-H. Wu, S.-W. Chen and C.-S. Yu, “Synthesis of 5-Radioiodoarabinosyl Uridine Analog for Probing the HSV-1 Thymidine Kinase Gene,” Journal of the Chinese Chemical Society, Vol. 54, No. 2, 2007, pp. 563-568.
[23] C. S. Yu and F. Oberdorfer, “Synthesis of 4-O-Methyl- Protected 5-(2-Hydroxyethy)-2’-Deoxyuridine Derivatives and their Nucleophilic Fluorination to 5-(2-Fluoroethyl)-2’-Deoxyuridine,” Synthesis, No. 12, 1999, pp. 2057-2064. doi:10.1055/s-1999-3641
[24] C. S. Yu and F. Oberdorfer, “Synthesis of (E)-5-[2-(Tri- N-Butylstannyl)Vinyl] Substituted 2’-Deoxyuridine Derivatives for Use in Halogenation and Radiohalogenation Reactions,” Synlett, No. 1, 2000, pp. 86-88.
[25] C. S. Yu, R. T. Wang, L. W. Chiang and M. H. Lee, “Synthesis of 4’,4’-C-Diaminomethyl Nucleoside Derivative As a Building Block for Constructing Libraries via Amide Bond Formation,” Tetrahedron Letters, Vol. 48, No. 17, 2007, pp. 2979-2982. doi:10.1016/j.tetlet.2007.03.002
[26] H. C. Hansen and G. Magnusson, “Synthesis of Selected Aminodeoxy Analogues of Galabiose and Globotriose,” Carbohydrate Research, Vol. 322, No. 3-4, 1999, pp. 166-180. doi:10.1016/S0008-6215(99)00229-3
[27] F. L. Lin, H. van Halbeek and C. R. Bertozzi, Synthesis of Mono- and Dideoxygenated, -Trehalose Analogs,” Carbohydrate Research, Vol. 342, No. 14, 2007, pp. 2014-2030. doi:10.1016/j.carres.2007.05.009
[28] X. Zhu and R. R. Schmidt, “Glycoside Synthesis from 1- Oxygen-Substituted Glycosyl Imidates,” In: A. V. Demchenko, Ed., Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008, pp. 143-185.
[29] P. B. Alper, S. C. Hung and C. H. Wong, “Metal Catalyzed Diazo Transfer for the Synthesis of Azides from Amines,” Tetrahedron Letters, Vol. 37, No. 34, 1996, pp. 6029-6032. doi:10.1016/0040-4039(96)01307-X
[30] A. X. Li and F. Z. Kong, “Syntheses of Beta-(1→6)- Branched Beta-(1→3)-Linked D-Galactans that Exist in the Rhizomes of Atractylodes Lancea DC,” Carbohydrate Research, Vol. 340, No. 12, 2005, pp. 1949-1962. doi:10.1016/j.carres.2005.05.017
[31] Y. G. Gu, M. M. Zhang, F. Yang and G. F. Gu, “A Simple Access to 3,6-Branched Oligosaccharides: Synthesis of a Glycopeptide Derivative that Relates to Lycium Barbarum L,” Journal of the Chemical Society, Perkin Transactions 1, No. 23, 2001, pp. 3122-3127.
[32] A. X. Li and F. Z. Kong, “Syntheses of Arabinogalactans Consisting of Beta-(1→6)-Linked D-Galactopyranosyl Backbone and Alpha-(1→3)-Linked L-Arabinofuranosyl Side Chains,” Carbohydrate Research, Vol. 339, No. 11, 2004, pp. 1847-1856. doi:10.1016/j.carres.2004.05.007
[33] T. Yamamura, N. Hada, A. Kaburaki, K. Yamano and T. Takeda, “Synthetic Studies on Glycosphingolipids from Protostomia Phyla: Total Syntheses of Glycosphingolipids from the Parasite, Echinococcus Multilocularis,” Carbohydrate Research, Vol. 339, No. 17, 2004, pp. 2749- 2759. doi:10.1016/j.carres.2004.09.015
[34] J. Ning, Y. Yi and Z. Yao, “An Efficient Method for the Synthesis of 2,6-Branched Galacto-Oligosaccharides and its Applications to the Synthesis of three Tetrasaccharides and a Hexasaccharide Related to the Arabinogalactans (Ags),” Synlett, No. 14, 2003, 2208-2212.
[35] Y. Zeng, Z. Wang, D. Whitfield and X. Huang, “Installation of Electron-Donating Protective Groups, a Strategy for Glycosylating Unreactive Thioglycosyl Acceptors Using the Preactivation-Based Glycosylation Method,” The Journal of Organic Chemistry, Vol. 73, No. 20, 2008, pp. 7952-7962. doi:10.1021/jo801462r
[36] C. S. Chao, M. C. Chen, S. C. Lin and K. K. T. Mong, “Versatile Acetylation of Carbohydrate Substrates with Bench-Top Sulfonic Acids and Application to One-Pot Syntheses of Peracetylated Thioglycosides,” Carbohydrate Research, Vol. 343, No. 5, 2008, pp. 957-964. doi:10.1016/j.carres.2008.01.014
[37] L. Chen, F. F. Liang, M. F. Xu, G. W. Xing and Z. W. Deng, “Synthesis of the Methyl Glycoside of Ganglioside GM(3) Trisaccharide Derivative with N-Acetyl-5-N,4-O- Oxazolidinone Protected P-Toluenethiosialoside,” Acta Chimica Sinica, Vol. 67, No. 12, 2009, pp. 1355-1362.
[38] C. Y. Liu, H. L. Chen, C. M. Ko and C. T. Chen, “Chemoselective Deacylation of Functionalized Esters Catalyzed by Dioxomolybdenum Dichloride,” Tetrahedron, Vol. 67, No. 5, 2011, pp. 872-876. doi:10.1016/j.tet.2010.12.024
[39] M.-C. Yan, Y.-N. Chen, H.-T. Wu, C.-C. Lin, C.-T. Chen and C.-C. Lin, “Removal of Acid-Labile Protecting Groups on Carbohydrates Using Water-Tolerant and Recoverable Vanadyl Triflate Catalyst,” The Journal of Organic Chemistry, Vol. 72, No. 1, 2007, pp. 299-302. doi:10.1021/jo061881g
[40] C. C. Lin, M. D. Jan, S. S. Weng, C. C. Lin and C. T. Chen, “O-Isopropylidenation of Carbohydrates Catalyzed by Vanadyl Triflate,” Carbohydrate Research, Vol. 341, No. 14, 2006, pp. 1948-1953. doi:10.1016/j.carres.2006.04.001
[41] T. Tsukida, M. Yoshida, K. Kurokawa, Y. Nakai, T. Achiha, T. Kiyoi and H. Kondo, “A Highly Practical Synthesis of Sulfated Lewis X: One-Pot, Two-Step Glycosylation Using ‘Armed/Disarmed’ Coupling and Selective Benzoylation and Sulfation,” The Journal of Organic Chemistry, Vol. 62, No. 20, 1997, pp. 6876-6881. doi:10.1021/jo970076m

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.