A Simple LDT-PCR Method for Detection of Various Nucleic Acid Sequence Changes in a Small Region of Genes—Application for the Identification of Gene Mutations in MTB rpoB Gene Associated with Drug Resistance


A modified low denaturing temperature PCR (LDT-PCR) method combined with DNA microarray technique is developed in our lab for quick and effective identification of various mutations in an 81 base pair region of Mycobacterium Tuberculosis (MTB) ribosome RNA polymerase subunit B (rpoB) gene associated with rifampin resistance. By incurporation of wild type (wt) allele fragments that had been PCR amplified previously, the target PCR fragments coming from mutant clinical MTB samples were codenaturized with incorporated wt type allele fragment at 94°C and then let them randomly form matched structures (homoduplex) and allele mismatch-containing structures (heteroduplex), respectively, when the temperature cooled down to 70°C. After the temperature was raised to 80°C, the heteroduplex double stranded fragments were preferentially denatured and resulted in PCR amplification as well as fluorescence incurporation. Since the homoduplex fragments need a higher temperature to be denatured, they were kept in double-stranded status at that temperature and failed to be PCR amplified. By hybridization of LDT-PCR products with the probes spotted on microarray slides, the fluorescent signals representing the presence of gene mutations were detected. We have tested this method on 35 clinical MTB samples and obtained satisfied results.

Share and Cite:

X. Tang, S. Wood and L. Baeva, "A Simple LDT-PCR Method for Detection of Various Nucleic Acid Sequence Changes in a Small Region of Genes—Application for the Identification of Gene Mutations in MTB rpoB Gene Associated with Drug Resistance," Open Journal of Medical Microbiology, Vol. 3 No. 3, 2013, pp. 172-177. doi: 10.4236/ojmm.2013.33026.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. A. Espinal, A. Laszlo, L. Simonsen, F. Boulahbal, S. J. Kim, A. Reniero, S. Hoffner, H. L. Rieder, N. Binkin, C. Dye, R. Williams and M. C. Ravigilione, “Global Trends in Resistance to Antituberculosis Drugs. World Health Organization—International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance,” The New England Journal of Medicine, Vol. 344, 2001, pp. 1294-1303. doi:10.1056/NEJM200104263441706
[2] C. Dye, M. A. Espinal, C. J. Watt, C. Mbiaga and B. G. Williams, “Worldwide Incidence of Multidrug-Resistant Tuberculosis,” Journal of Infectious Diseases, Vol. 185, No. 8, 2002, pp. 1197-1202. doi:10.1086/339818
[3] S. Ramaswamy and J. M. Musser, “Molecular Genetic Basis of Antimicrobial Agent Resistance in Mycobacterium tuberculosis: 1998 Update,” The International Journal of Tuberculosis and Lung Disease, Vol. 79, No. 1, 1998, pp. 3-29. doi:10.1054/tuld.1998.0002
[4] D. A. Rouse, Z. Li, G. H. Bai and S. L. Morris, “Characterization of the katG and inhA Genes of Isoniazid-Resistant Clinical Isolates of Mycobacterium tuberculosis,” Antimicrobial Agents and Chemotherapy, Vol. 39, No. 11, 1995, pp. 2472-2477. doi:10.1128/AAC.39.11.2472
[5] A. S. Piatek, A. Telenti, M. R. Murray, H. El-Haij, W. R. Jacobs, F. R. Kramer and D. Alland, “Genotypic Analysis of Mycobacterium tuberculosis in Two Distinct Populations Using Molecular Beacons: Implications for Rapid Susceptibility Testing,” Antimicrobial Agents and Chemotherapy, Vol. 44, No. 1, 2000, pp. 103-110. doi:10.1128/AAC.44.1.103-110.2000
[6] H. R. Van Doorn, E. C. J. Class, K. E. Templeton, A. G. M. van der Zanden, , A. te Koppele Vije, M. D. de Jong, J. Dankert and E. J. Kuijper, “Detection of a Point Mutation Associated with High-Level Isoniazid Resistance in Mycobacterium tuberculosis by Using Real-Time PCR Technology with 3’-Minor Groove Binder-DNA Probes,” Journal of Clinical Microbiology, Vol. 41, No. 10, 2003, pp. 4630-4635. doi:10.1128/JCM.41.10.4630-4635.2003
[7] A. J. Flavell, V. N. Bolshakov, A. Booth, R. Jing, J. Russell, T. H. Ellis and P. Isaac, “A Microarray-Based High Throughput Molecular Marker Genotyping Method: The Tagged Microarray Marker (TAM) Approach,” Nucleic Acids Research, Vol. 31, No. 19, 2003, p. e115. doi:10.1093/nar/gng113
[8] D. O’Meara, A. Ahmadian, J. Odeberg and J. Lundeberg, “SNP Typing by Apyrase-Mediated Allele-Specific Primer Extension on DNA Microarrays,” Nucleic Acids Research, Vol. 30, No. 15, 2002, p. e75. doi:10.1093/nar/gnf074
[9] C. Su, C. Hott, B. H. Brownstein and L. D. Sibley, “Typing Single-Nucleotide Polymorphisms in Toxoplasma Gondii by Allele-Specific Primer Extension and Microarray Detection,” Methods in Molecular Biology, Vol. 270, 2004, pp. 249-262.
[10] O. Ericsson, A. Sivertsson, J. Lundeberg and A. Ahmadian, “Microarray-Based Resequencing by Apyrase-Mediated Allele-Specific Extension,” Electrophoresis, Vol. 24, No. 19-20, 2003, pp. 3330-3338. doi:10.1002/elps.200305583
[11] N. P. Gerry, N. E. Witowski, J. Day, R. P. Hammer, G. Barany and F. Barany, “Universal DNA Microarray Method for Multiplex Detection of Low Abundance Point Mutations,” Journal of Molecular Biology, Vol. 292, No. 2, 1999, pp. 251-262. doi:10.1006/jmbi.1999.3063
[12] A. Troesch, H. Nguyen, C. G. Miyada, S. Desvarenne, T. R. Gingeras, P. M. Kaplan, P. Cros and C. Mabilat, “Mycobacterium Species Identification and Rifampin Resistance Testing with High-Density DNA Probe Arrays,” Journal of Clinical Microbiology, Vol. 37, No. 1, 1999, pp. 49-55.
[13] J. Yue, W. Shi, J. Xie, Y. Li, E. Zeng, L. Liang and H. Wang, “Detection of Rifampin-Resistant Mycobacterium tuberculosis Strains by Using a Specialized Oligonucleotide Microarray,” Diagnostic Microbiology and Infectious Disease, Vol. 48, No. 1, 2004, pp. 47-54. doi:10.1016/j.diagmicrobio.2003.08.005
[14] X. Tang, L. M. Sheldon, J. L. Langone and L. E. Bockstahler, “Microarray and Allele Specific PCR Detection of Point Mutations in Mycobacterium Tuberculosis Genes Associated with Drug Resistance,” Journal of Microbiological Methods, Vol. 63, No. 3, 2006, pp. 318-330. doi:10.1016/j.mimet.2005.04.026
[15] C. A. Milbury, J. Li and G. M. Makrigiorgos, “COLD- PCR-Enhanced High-Resolution Melting Enables Rapid and Selective Identification of Low-Level Unknown Mutations,” Clinical Chemistry, Vol. 55, No. 12, 2009, pp. 2130-2143. doi:10.1373/clinchem.2009.131029
[16] J. Li, C. A. Milbury, C. Li and G. M. Makrigiorgos, “Two-Round Coamplification at Lower Denaturation Temperature-PCR (COLD-PCR)-Based Sanger Sequencing Identifies a Novel Spectrum of Low-Level Mutations in Lung Adenocarcinoma,” Human Mutation, Vol. 30, No. 11, 2009, pp. 1583-1590. doi:10.1002/humu.21112
[17] I. Mancini, C. Santucci, R. Sestini, L. Simi, N. Pratesi, F. Cianchi, R. Valanzano, P. Pinzani and C. Orlando, “The Use of COLD-PCR and High-Resolution Melting Analysis Improves the Limit of Detection of KRAS and BRAF Mutations in Colorectal Cancer,” The Journal of Molecular Diagnostics, Vol. 12, No. 5, 2010, pp. 705-711. doi:10.2353/jmoldx.2010.100018

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.