Adjusting Second Moment Bias in Eigenspace Using Bayesian Empirical Estimators, Dirichlet Tessellations and Worldview I Data for Predicting Culex quinquefasciatus Habitats in Trinidad
Benjamin G. Jacob, Dave D. Chadee, Robert J. Novak
DOI: 10.4236/jgis.2011.31003   PDF   HTML     5,657 Downloads   10,096 Views   Citations


Temporally weighted regression models with a spatial autoregressive component may estimate nonlinearities in spatiotemporal-sampled data of Culex quinquefasciatus, a major vector of West Nile Virus (WNV) which can help implement control strategies by determining optimal predictors associated to prolific habitats. The design of this kind of mixed model can specifically incorporate spatial autocorrelation whilst including the influence of other aspatial predictor variables. Currently, the lack of an estimation theory that allows for het- eroscedasticity and corresponding joint hypothesis testing in the presence of spatial dependence in georefer- enced Cx. quinquefasciatus habitat data is a serious shortcoming in WNV research. In this paper we used spatially lagged and simultaneous autoregressive models based on multiple predictor variables of immature Cx. quinquefasciatus and Worldview 1 (WV-1) data to help implant a remote habitat-based surveillance sys- tem in Trinidad. Initially, we used Geomatica Ortho Engine® v. 10.2 for extracting a Digital Elevation Model (DEM) from the WV-1 raw imagery. Results of the DEM analyses indicated a statistically significant inverse linear relationship between total sampled Cx. quinquefasciatus data and elevation (m) (R2 = -0.439; p < 0.0001), with a standard deviation of 10.41. Additional field-sampled information was derived using data from an or-thogonal grid-matrix constructed in an ArcInfo 9.3® and overlaid onto the WV-1 data. A unique identifier was placed in the centroid of each grid cell. Univariate statistics and Poisson regression models were then generated using the georeferenced covariates in SAS/GIS®. Coefficient estimates were also used to define expectations for prior distributions in a Bayesian estimation matrix using Markov Chain Monte Carlo (MCMC) specifications. A spatial residual trend analyses was then performed using autocorrelation indices which linked tabular data in SAS PROCLMIXED® with the egg-raft count data in ArcInfo®. The estimation matrix identified prolific habitats based on the covariate distance to the nearest house. An Ordinary kriged-based interpolator was then constructed in Geostatistical Analyst Extension of ArcGIS 9.3® based on the adjusted Bayesian estimates. For total Cx. quinquefasciatus egg-raft count, first order trend was fitted to the semivariogram at a partial sill of 5.931 km, nugget of 6.374 km, lag size of 7.184 km, and a range of 31.02 km using 12 lags. We assessed the performance accuracy of the interpolation procedures based on the magnitude and distribution of errors between observed and model-predicted values using Voroni tessella- tions. These residuals divided the space between the individual georeferenced Cx. quinquefasciatus habitats by XY coordinates in 2-dimenisional space which revealed that the geophysical parameter error residuals in the interpolation model were within normal statistical limitations. Newer GIS software and WV-1 data can generate highly accurate predictive Cx. quinquefasciatus habitat distribution models which can target prolific habitats of based on field-sampled count data. Our results suggest it may be unnecessary to manage all Cx. quinquefasciatus habitats to obtain significant reductions in incidence and prevalence of WNV in Trinidad.

Share and Cite:

B. Jacob, D. Chadee and R. Novak, "Adjusting Second Moment Bias in Eigenspace Using Bayesian Empirical Estimators, Dirichlet Tessellations and Worldview I Data for Predicting Culex quinquefasciatus Habitats in Trinidad," Journal of Geographic Information System, Vol. 3 No. 1, 2011, pp. 18-49. doi: 10.4236/jgis.2011.31003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. Nash, F. Mostashari, A. Fine, J. Miller, D. O’Leary, K. Murray, A. Huang, A. Rosenberg, A. Greenberg, M. Sherman, S. Wong, G. L. Campbell, J. T. Roehrig, D. J. Gubler, W. J. Shieh, S. Zaki, P. Smith and M. Layton, “The Outbreak of West Nile Virus Infection in the New York City Area in 1999,” The New England Journal of Medicine, Vol. 344, 2001, pp. 1807-1814. doi:10.1056/NEJM200106143442401
[2] N. Komar and G. C. Clark, “West Nile Virus Activity in Latin America and the Caribbean,” Revista Panameri- cana de Salud Pública, Vol. 19, 2006, pp. 112-117. doi:10.1590/S1020-49892006000200006
[3] M. J. Turell, M. R. Sardelis, M. L. O’Guinn and D. J. Dohm, “Potential Vectors of West Nile Virus in North America. Curr,” Top Microbiol. Immunol, Vol. 267, 2002, pp. 241-252.
[4] B. G. Jacob, R. L. Lampman, M. P. Ward, E. J. Muturi, J. A. Morris, E. X. Caamano and R. J. No-vak, “Geospatial Variability in the Egg Raft Distribution and Abundance of Culex Pipiens and Culex Restuans in Urbana-Cham- paign, Illinois,” International Journal of Remote Sensing, Vol. 30, 2009, pp. 2005-2019. doi:10.1080/01431160802549195
[5] B. G. Jacob, W. Gu, E. J. Muturi, E. X. Caamano, J. M. Morris, R. Lampman, R. J. Novak, “Developing Opera- tional Al-gorithms Using Linear and Non-Linear Least Squares Estimation in Python? for Identification of Culex Pipiens and Culex Restuans Aquatic Habitats in a Mos- quito Abatement District (Cook County, Illinois),” Geo- spat Health, Vol. 3, 2009, pp. 23-31.
[6] J. K. Meece, J. S. Henkel, L. Glaser, K. D. Reed, “Mos- quito Surveillance for West Nile Virus in Southeastern Wisconsin-2002,” Clinical Medicine & Research Vol. 1, 2003, pp. 37-42. doi:10.3121/cmr.1.1.37
[7] F. W. Kutz, T. G. Wade and B. B. Pagac, “A Geospatial Study of the Potential of Two Exotic Species of Mosqui- toes to Impact the Epi-demiology of West Nile Virus in Maryland,” Journal of the American Mosquito Control Association, Vol. 19, 2003, pp. 190-198.
[8] D. A. Griffith, “A Comparison of Six Analytical Disease Mapping Techniques as Ap-plied to West Nile Virus in the Coterminous United States,” International Journal of Health Geographics, Vol. 4, 2005, pp. 18-26. doi:10.1186/1476-072X-4-18
[9] U. Kitron, “Risk Maps: Transmission and Burden of Vector-Borne Dis-eases,” Parasitol Today, Vol. 16, 2000, pp. 324-325. doi:10.1016/S0169-4758(00)01708-7
[10] D. J. Rogers and S. E. Randolph, “Studying the Global Dis- tribution of Infectious Diseases Using GIS and RS,” Na- - ture Reviews Microbiology, Vol. 1, 2003, pp. 231-237.
[11] S. I. Hay, J. A. Omumbo, M. H. Craig and R. W. Snow, “Earth Observation, Geographic In-formation Systems and Plasmodium Falciparum Malaria in Sub-Saharan Africa,” Advances in Parasitol,Vol. 47, 2000.
[12] E. P. Pegoraro, M. J. Monson, R. K. Rey, A. Barron-Gaf- ford and C. B. Osmond, “The Effect of Elevated CO2, Soil and Atmospheric Water Deficit and Seasonal Phenology on Leaf and Ecosystem Isoprene Emission,” Functional Plant Biology, Vol. 34, 2007, p. 774.
[13] doi:10.1071/FP07021
[14] J. S. Brownstein, T. R. Holfold, D. Fish, “Enhancing West Nile Virus Surveillance, United States,” Emerging Infectious Dis-eases, Vol. 10, 2004, pp. 1129-1133.
[15] N. Komar, S. Langevin, S. Hinten, N. Nemeth, E. Ed- wards, D. Het-tler, B. Davis, R. Bowen, M. Bunning, “Experimental Infection of North American Birds with the New York 1999 Strain of West Nile Virus,” Emerg- ing Infectious Diseases, Vol. 9, 2003, pp. 311-322.
[16] L. R. Petersen, A. A. Marfin, D. J. Gubler, “West Nile Virus,” JAMA, the Journal of the American Medical As- sociation, Vol. 4, No. 290, 2003, pp. 524-528.
[17] B. G. Jacob, N. D. Burkett-Cadena, J. C. Luvall, S. H. Parcak, C. J. W. McClure, L. K. Estep, G. E. Hill, E. W. Cupp and R. J. Novak, “Developing GIS-Based Eastern Equine En-cephalitis Vector-Host Models in Tuskegee, Ala- Bama,” International Journal of Health Geographics, Vol. 9, 2010, p. 12. doi:10.1186/1476-072X-9-12
[18] E. Mushinzi-mana, S. Munga, N. Minakawa, L. Li, C. C. Feng, L. Bian, U. Kitron, C. Schmidt, L. Beck, G. Zhou and A. K. Githeko, “Landscape Determinants and Remote Sensing of Anopheline Mosquito Larval Habitats in the Western Kenya Highlands,” Malaria Journal, Vol. 5, 2006, p. 13. doi:10.1186/1475-2875-5-13
[19] J. Shaman, J. F. Day and M. Stieglitz, “Drought-Induced Amplification and Epidemic Transmission of West Nile Virus in Southern Florida,” Journal of Medical Entomol- ogy, Vol. 42, No. 2, 2005, pp. 134-141. doi:10.1603/0022-2585(2005)042[0134:DAAETO]2.0.CO;2
[20] J. R. Jensen, “Remote Sensing of Urban Sub-urban Infra- structure and Socio-Economic Attributes,” Photogram- metric Engineering and Remote Sensing, Vol. 5, No. 65, 2005, pp. 611-622.
[21] B. G. Jacob, E. J Muturi, E. X. Caamano, J. T. Gunter, E. Mpanga, R. Ayine, J. Okelloonen, J. P. M. Nyeko, J. I. Shililu, J. I. Githure, J. L. Regens and R. J. Novak, “Hydro- logical Modeling of Geophysical Parameters of Arboviral and Protozoan Disease Vectors in Internally Displaced Peo-ple Camps in Gulu, Uganda,” International Journal of Health Geographics, Vol. 7, 2008, pp. 1-11. doi:10.1186/1476-072X-7-11
[22] B. G. Jacob, D. A. Griffith and R. J. Novak, “Decomposing Malaria Mos-quito Aquatic Habitat Data into Spatial Autocorrelation Eigenvectors in a SAS/GIS? Module,” Transactions in GIS Vol. 12, 2008, pp. 341-364. doi:10.1111/j.1467-9671.2008.01104.x
[23] C. N. Theophilides, S. C. Ahearn, E. S. Binkowski, W. S. Paul and K. Gibbs, “First Evidence of West Nile Virus Am- plification and Relationship to Human Infections,” Inter- national Journal of Geographical Information Science, Vol. 20, 2006, pp. 103-115.
[24] doi:10.1080/13658810500286968
[25] T. G. An-dreadis, J. F. Anderson and C. R. Vossbrink, “Mos- quito Surveillance for West Nile Virus in Connecticut, 2000: Isolation from Culex Pipiens, Cx. Restuans, Cx. Sali-narius, and Culiseta Melanura,” Emerging Infectious Diseases, Vol. 7, 2001, pp. 670-674. doi:10.3201/eid0704.010413
[26] M. Eidson, J. Miller, L. Kramer, B. Cherry and Y. Hagiwara, “Dead Crow Densities and Human Cases of West Nile Virus New York State 2000,” Emerging Infectious Dis- eases, Vol. 7, 2001, pp. 662-664. doi:10.3201/eid0704.010411
[27] M. Kulldroff, “A Spatial Scan Statistic,” Community Statistical Theory Methods, Vol. 26, 1997, pp. 1481-1496. doi:10.1080/03610929708831995
[28] B. G. Jacob, E. Muturi, J. Mwangangi, J. Funes, J. Shililu, J. Githure and R. J. Novak, “Remote and Field Level Quantification of Vegetation Covariates for Malaria Mapping in Three Rice Agro-Village Complexes in Central Kenya,” Inter-national Journal of Health Geographics, Vol. 6, 2007, pp. 21-28. doi:10.1186/1476-072X-6-21
[29] I. Klein-schmidt, M. Bagayoko, G. P. Y. Clarke, M. Craig and D. L. Le Sueur, “A Spatial Statistical Approach to Ma- laria Mapping,” International Epidemiology Association, Vol. 29, No. 2, 2000, pp. 355-361.
[30] N. Cressie, “Aggre-gation in Geostatistical Problems,” Geostatistics troia, 1992.
[31] W. Gu and R. J. Novak, “Habitat-Based Modeling of Impacts of Mosquito Larval Interventions on Entomological Inoculation Rates, Incidence, and Prevalence of Malaria,” American Journal of Tropical Medicine and Hygiene, Vol. 73, 2005, pp. 546-552.
[32] B. G. Jacob, D. A. Griffith, E. J. Muturi, E. X. Caamano, J. I. Githure, J. T. Gunter, R. J. Novak, “A Heteroskedas- tic Error Covariance Matrix Estimator Using a First-Order Conditional Autoregressive Markov Simula- tion for Deriving Asymptotical Efficient Esti-mates from Ecological Sampled Anopheles Arabiensis Aquatic Habi- tat Covariates,” Malaria Journal, Vol. 8, 2009, pp. 216-224. doi:10.1186/1475-2875-8-216
[33] D. Chadee, “Key Premises, a Guide to Aedes Aegypti (Diptera: Culicidae) Surveillance and Control,” Bulletin of Entomological Research, Vol. 94, 2004, pp. 201-207. doi:10.1079/BER2004297
[34] J. P. Bradbury, B. Ley-den, M. Salgado-Labouriau, Lewis, W. M. Jr., C. Schu-bert, M. W. Binford, D. G. Frey, D. R. Whitehead and F. W. Weibezahn, “Late Quaternary Envi- ronmental His-tory of Lake Valencia,” Ven. Science, Vol. 4, 1981, pp. 18-26.
[35] J. R. Flenley, “The Equatorial Rain Forest: A Geological History,” Butterworth, London, Vol. 9, 1979, p. 162.
[36] J. S. Beard, “The Mora Forests of Auburn, British West Indies,” Journal of Ecology, Vol. 33, 1946, pp. 173-192. doi:10.2307/2256464
[37] D. D. Chadee, “Indoor and Outdoor Host-Seeking Rhythms of Anopheles Albitarsis (Diptera: Culicidae) in Trinidad, West Indies,” Journal of Medical Entomology, Vol. 29, 1992, pp. 567-569.
[38] B. G. Jacob, P. G. Nelson, R. Lampman, J. A. Morris, A. Raims, J. Funes, C. LaPonte and R. J. No-vak, “Comparing Global Positioning System (GPS) Technology for Identi- fying Spatial Ecological Varia-tion for Urban Mosquito Abatement,” Wing Beats, Vol. 16, 2005, pp. 30-33.
[39] B. G. Jacob, J. Shililu, E. J. Muturi, J. M. Mwangangi, S. M. Muriu, J. Funes, J. Githure, J. L. Regens and R. J, Novak, “Spatially Tar-geting Culex Quinquefasciatus Aquatic Habitats on Modified Land Cover for Imple- menting an Integrated Vector Management (IVM) Pro- gram in Three Villages Within the Mwea Rice Scheme, Keny,” International Journal of Health Geographics, Vol.5, 2006, pp. 18-27. doi:10.1186/1476-072X-5-18
[40] F. A. Haight, “Handbook of the Poisson Distribution,” New York, Wiley, 1967.
[41] S. Lang and A. Brezger, “Bayesian P-Splines,” Journal of Computational and Graphical Statistics Vol. 13, 2004, pp. 183-212. doi:10.1198/1061860043010
[42] D. A. Griffith, “Spa-tial Autocorrelation on Spatial Filter- ing,” Springer, 2003.
[43] J. F. Anderson, T. G. Andreadis, A. J. Main and D. L. Kline, “Prevalence of West Nile Virus in Tree Canopy-Inhabiting Culex Pipiens and Associated Mos-quitoes,” American Journal of Tropical Medicine and Hygiene, Vol. 71, 2004, pp. 112-119.
[44] W. K. Reisen, J. O. Lundstrom, T. W. Scott, B. F. El- dridge, R. E. Chiles, R. Cusack, V. M. Martinez, H. D. Lothrop, D. Gutierrez, S. E. Wright, K. Boyce and B. R. Hill,. “Pat-terns of Avian Seroprevalence to Western Equine En-cephalomyelitis and St. Louis Encephalitis Viruses in California, USA,” Journal of Medical Entomology, Vol. 37, 2000, pp. 507-527. doi:10.1603/0022-2585-37.4.507
[45] L. M. Calhoan, M. Avery, L. Jones, K. Gunarto, R. King, J. Roberts and T. R. Burkot, “Combined Sewage Overflows (CSO) Are Major Urban Breeding Sites for Culex Quin- quefascia-tus in Atlanta, Georgia,” American Journal of Tropical Medicine and Hygiene, Vol. 77, 2007, pp. 478-484.
[46] K. Sugihara, A. Okabe and T. Satoh, “Computation Method for the Point Cluster Analysis on Networks,” Geoinfor- matica, Vol. 15, No. 1, 2008, pp. 9-92.
[47] J. H. Rappole, S. R. Derrickson and Z. Hubálek, “Migratory Birds and Spread of West Nile Vi-rus in the Western Hemisphere,” Emerging Infectious Diseases, Vol. 6, 2000, pp. 11-19. doi:10.3201/eid0604.000401
[48] A. T. Peterson, D. A. Vieglais and J. K. Andreasen, “Migra- tory Birds Mod-eled as Critical Transport Agents for West Nile Virus in North America,” Vector-Borne and Zoono- tic Diseases, Vol. 3, 2003, pp. 27-37. doi:10.1089/153036603765627433
[49] R. B Tesh, R. Parson, M. Siirin, Y. Randle, C. Sargent, H. Guzman, T. Wuithiranyagool, S. Higgs, D. L. Vanlanding- ham, A. A. Bala, K. Haas and B. Zerinque, “Year-Round West Nile Virus Activity, Gulf Coast Region, Texas and Louisi- ana,” Emerging Infectious Diseases, Vol. 10, 2004, pp. 1649-1652.
[50] T. A. Beveroth, M. P. Ward, R. L. Lampman, A. M. Rin- gia and R. J. Novak, “Changes in Seroprevalence of West Nile Virus Across Illinois in Free-Ranging Birds from 2001 through 2004,” American Journal of Tropical Medicine and Hygiene, Vol. 74, 2006, pp. 174-179.
[51] R. M. Gleiser, A. J. MacKay, A. Roy, M. M. Yates, R. H. Vaeth, G. M. Faget, A. E. Fol-som, W. F. Augustine, R. A. Jr. Wells and M. J. Perich, “West Nile Virus Surveillance in East Baton Rouge Par-ish, Louisiana,” Journal of the American Mosquito Con-trol Association, Vol. 23, 2007, pp. 29-36. doi:10.2987/8756-971X(2007)23[29:WNVSIE]2.0.CO;2
[52] P. P. Marra, S. Griffing, C. Caffrey, A. M. Kilpatrick, R. McLean, C. Brand, E. Saito, A. P. Dupuis, L. Kramer and R. J. Novak, “West Nile Virus and Wild-life,” BioScience, Vol. 54, 2004, pp. 393-402. doi:10.1641/0006-3568(2004)054[0393:WNVAW]2.0.CO;2

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.