Therapeutic Efficacy of Genistein-Topotecan Combination Compared to Vitamin D3-Topotecan Combination in LNCaP Prostate Cancer Cells

Abstract

Background: Prostate cancer is the most common cancer in men over the age of 60 in Western countries. An estimated 241,740 new cases of prostate cancer have been diagnosed in the United States in 2012 with a death toll of 28,170. Varieties of natural phytochemicals such as genistein and topotecan have shown potential chemotherapeutic capacities and are being used to inhibit the growth and proliferation of cell in prostate cancer. Purpose of Study: In this study, we aim to determine the efficacy of Vitamin D3-Topotecan combination compared to Genistein-Topotecan in apoptosis induction in LNCaP prostate cancer cells. Methods: LNCaP cells were grown in complete RPMI medium and cultured at 37°C, 5% CO2 for 23 - 48 hrs to achieve 70% - 80% confluence. The cells were then treated with Genistein-Topotecan, Vitamin D3-Topotecan combination and TPT alone for 24 - 48 hours. In addition, post-treatment assayed using: Trypan Blue exclusion and MTT for cell viability, Ethidium bromide/Acridine orange to determine apoptosis induction, Rhodamine 123/Ethidium bromide to differentiate between viable, apoptotic, and necrotic cells, as well as to assess possible apoptotic mechanism, and DNA fragmentation to discriminate between apoptotic and necrotic cell death. Results: The overall data indicated the dose-and time-dependent cell death in the LNCaP cells and apoptosis as the major mechanism of treatment-induced cell growth arrest. Conclusion: The Genistein-Topotecan combination treatment was significantly more efficacious in growth inhibition of LNCaP cells compared to Vitamin D3-Topotecan or Topotecan alone.

Share and Cite:

Chakraborty, S. , Sandoval-Bernal, B. and Kumi-Diaka, J. (2013) Therapeutic Efficacy of Genistein-Topotecan Combination Compared to Vitamin D3-Topotecan Combination in LNCaP Prostate Cancer Cells. CellBio, 2, 97-104. doi: 10.4236/cellbio.2013.23011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] American Cancer Society, “Prostate Cancer Detailed Guide”. http://www.cancer.org/Cancer/ProstateCancer/DetailedGuide/prostate-cancer-key-statistics
[2] M. Fukutake, K. Takahashi, H. Ishida, et al., “Quantitation of Genistein and Genistin in Soyabeans and Soyabean Product,” Food and Chemical Toxicology, Vol. 34, No. 5, 1996, pp. 457-461. doi:10.1016/0278-6915(96)87355-8
[3] C. A. Lamarliniera, “Protection against Breast Cancer with Genistein: A Component of Soy,” The American Journal of Clinical Nutrition, Vol. 71, No. 6, 2000, pp. 1705S-1707S.
[4] J. K. Kumi-Diaka, M. Hassanhi, K. Merchant, et al., “Influence of Genistein Isoflavone on Matrix Metalloproteinase-2 Expression in Prostate Cancer Cells,” Journal of Medicinal Food, Vol. 9, No. 4, 2006, pp. 491-497.
[5] J. K. Kumi-Diaka, K. Merchant, A. Haces, et al., “Genistein-Selenium Combination Induces Growth Arrest in Prostate Cancer Cells,” Journal of Medicinal Food, Vol. 13, No. 4, 2010, pp. 842-850. doi:10.1089/jmf.2009.0199
[6] J. Kumi-Diaka, S. Saddler-Shawnette, A. Aller, et al., “Potential Mechanism of Phytochemical-Induced Apoptosis in Human Prostate Adenocarcinoma Cells: Therapeutic Synergy in Genistein and Beta-Lapachone Combination Treatment,” Cancer Cell International, Vol. 4, No. 1, 2004, p. 5. doi:10.1186/1475-2867-4-5
[7] S. Balabhadrapathruni, T. J. Thomas, E. J. Yurkow, et al., “Effects of Genistein and Structurally Related Phytoestrogens on Cell Cycle Kinetics and Apoptosis in MDA- MB-468 Human Breast Cancer Cells,” Oncology Reports, Vol. 7, No. 1, 2000, pp. 3-12.
[8] H. S. Seo, J. Ju, K. Jang et al., “Induction of Apoptotic Cell Death by phyToestrogens by Up-Regulating the Levels of Phospho-p53 and p21 in Normal and Malignant Estrogen Receptor α-Negative Breast Cells,” Nutrition Research, Vol. 31, No. 2, 2011, pp. 139-146. doi:10.1016/j.nutres.2011.01.011
[9] N. Zhou, Y. Yan, W. Li, et al., “Genistein Inhibition of Topoisomerase II Alpha Expression Participated by Sp1 and Sp3 in HeLa cell,” International Journal of Molecular Sciences, Vol. 10, No. 7, 2009, pp. 3255-3268. doi:10.3390/ijms10073255
[10] Z. Li, J. Li, W. Li, et al., “Genistein Induces G2/M Cell Cycle Arrest via Stable Activation of ERK1/2 Pathway in MDA-MB-231 Breast Cancer Cells,” Cell Biology and Toxicology, Vol. 24, No. 5, 2008, pp. 401-409. doi:10.1007/s10565-008-9054-1
[11] D. Feldman, R. J. Skowronski and D. M. Peehl, “Vitamin D and Prostate Cancer,” Advances in Experimental Medicine and Biology, Vol. 375, 1995, pp. 53-63. doi:10.1007/978-1-4899-0949-7_5
[12] R. J. Skowronski, D. M. Peehl and D. Feldman, “Vitamin D and Prostate Cancer: 1, 25 Dihydroxy Vitamin D3 Receptors and Actions in Human Prostate Cancer Cell Lines,” Endocrinology, Vol. 132, No. 5, 1993, pp. 1952-1960. doi:10.1210/en.132.5.1952
[13] R. J. Skowronski, D. M. Peehl and D. Feldman, “Actions of Vitamin D3, Analogs on Human Prostate Cancer Cell Lines: Comparison with 1,25-Dihydroxyvitamin D3,” Endocrinology, Vol. 136, No. 1, 1995, pp. 20-26. doi:10.1210/en.136.1.20
[14] M. Guzey, S. Kitada and J. C. Reed, “Apoptosis Induction by 1alpha,25-Dihydroxyvitamin D3 in Prostate Cancer,” Molecular Cancer Therapeutics, Vol. 1, No. 9, 2002, 667- pp. 677.
[15] D. M. Peeh, R. J. Skowronski, G. K. Leung, et al., “Anti-proliferative Effects of 1,25 Dihydroxy Vitamin D3 on Primary Cultures of Human Prostatic Cells,” Cancer Research, Vol. 54, No. 3, 1994, pp. 805-810.
[16] R. J. Skowronski, D. M. Peehl and D. Feldman, “Actions of Vitamin D3, Analogs on Human Prostate Cancer Cell Lines: Comparison with 1,25-Dihydroxyvitamin D3,” Endocrinology, Vol. 136, No. 1, 1995, pp. 20-26. doi:10.1210/en.136.1.20
[17] G. J. Kelloff, “Perspective on Cancer Chemoprevention Research and Drug Development,” Advances in Cancer Research, Vol. 78, pp. 199-334. doi:10.1016/S0065-230X(08)61026-X
[18] A. Rao, R. D. Woodruff, W. N. Wade, T. E. Kute and S. D. Cramer, “Genistein and Vitamin D Synergistically Inhibit Human Prostatic Epithelial Cell Growth,” Journal of Nutrition, Vol. 132, No. 10, 2002, pp. 3191-3194.
[19] C. M. Yashar, W. J. Spanos, et al., “Potential of the Radiation Effect with Genistein in Cervical Cancer,” Gynecologic Oncology, Vol. 99, No. 1, 2005, pp. m199-m205. doi:10.1016/j.ygyno.2005.07.002
[20] F. Lian, M. Bhuiyan, Y. W. Li, N. Wall, M. Kraut and F. H. Sarkar, “Genistein-Induced G2-M Arrest, p21WAF1 Upregulation, and Apoptosis in a Non-Small-Cell Lung Cancer Cell Line,” Nutrition and Cancer, Vol. 31, No. 3, 1998, pp. 184-191. doi:10.1080/01635589809514701
[21] C. Law, “Basic Research Plays A Key Role in New Patient Treatments,” Journal of the National Cancer Institute, Vol. 88, No. 13, 1996, p. 869. doi:10.1093/jnci/88.13.869
[22] C. McNeil, “Topotecan after FDA and Asco What’s Next?” Journal of the National Cancer Institute, Vol. 88, No. 12, 1996, pp. 788-789. doi:10.1093/jnci/88.12.788
[23] H. Ulukan and P. W. Swaan, “Camptothecin: A Review of Their Chemotherapeutic Potential,” Drugs, 62, 14, 2002, pp. 2039-2057.
[24] M. E. Wall, M. C. Wani, C. E. Cook, et al., “Plant Anti- Mutagenic Agents, 1. General Bioassay and Isolation Procedures,” Journal of Natural Products, Vol. 51, No. 5, 1988, pp. 866-873. doi:10.1021/np50059a009
[25] R. Padzur, “FDA Approval for Topotecan Hydrochloride”. http://www.cancer.gov/cancertopics/druginfo/fda-topotecan-hydrochloride
[26] M. R. Redinbo, L. Stewart, P. Kuhn, et al., “Crystal Structures of Human Topoisomerase I in Covalent and Non-Covalent Complexes with DNA,” Science, Vol. 279, No. 5356, 1998, pp. 1504-1513. doi:10.1126/science.279.5356.1504
[27] D. J. Adams, M. L. Wahl, J. L. Flowers, et al., “Camptothecin Analogs with Enhanced Activity against Human Breast Cancer Cells. II. Impact of the Tumor pH Gradient,” Cancer Chemotherapy and Pharmacology, Vol. 57, No. 2, 2006, pp. 145-154. doi:10.1007/s00280-005-0008-5
[28] W. ten Bokkel Huinink, S. R. Lane and G. A. Ross, “Long-Term Survival in a Phase III, Randomized Study of Topotecan versus Paclitaxel in Advanced Epithelial Ovarian Carcinoma,” Annals of Oncology, Vol. 15, No. 1, 2004, pp. 100-103. doi:10.1093/annonc/mdh025
[29] P. A. Ohneseit, D. Prager, R. Kehlbach and H. P. Rodeman, “Cell Cycle Effects of Topotecan Alone and in Combination with Irradiation,” Radiotherapy & Oncology, Vol. 75, No. 2, 2005, pp. 237-245. doi:10.1016/j.radonc.2005.03.025
[30] M. Timur, S. H. Akbas and T. Ozben, “The Effect of Topotecan on Oxidative Stress in MCF-7 Human Breast Cancer Cell Line,” Acta Biochimica Polonica, Vol. 52, No. 4, 2005, pp. 897-902.
[31] C. Erlichman, S. A. Boerner, C. G. Halgren, et al., “The HER Tyrosine Kinase Inhibitor CI1033 Enhances Cytotoxicity of 7-Ethyl-10-hydroxycamptothecin and Topotecan by Inhibiting Breast Cancer Resistance Protein-Mediated Drug Efflux,” Cancer Research, Vol. 61, No. 2, 2001, pp. 739-748.
[32] V. Hormann, J. Kumi-Diaka, M. Durity, et al., “Anticancer Activities of Genistein-Topotecan Combination in Prostate Cancer Cells,” Journal of Cellular and Molecular Medicine, Vol. 20, No. 10, 2012, pp. 1-6. doi:10.1111/j.1582-4934.2012.01576.x
[33] K. S. Louis and A. C. Siegel, “Cell Viability Analysis Using Trypan Blue: Manual and Automated Methods,” Methods in Molecular Biology, Vol. 740, 2011, pp. 7-12. doi:10.1007/978-1-61779-108-6
[34] J. Kumi-Diaka and A. Butler, “Caspase 3 Protease Activation during the Process of Genistein-Induced Apoptosis in TM4 Testicular Cells,” Biology of the Cell, Vol. 92, No. 2, 2000, pp. 115-124. doi:10.1016/S0248-4900(00)89019-X

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.