Share This Article:

Enhancement of Ethanol Production from Napiergrass (Pennisetum purpureum Schumach) by a Low-Moisture Anhydrous Ammonia Pretreatment

Abstract Full-Text HTML Download Download as PDF (Size:181KB) PP. 179-185
DOI: 10.4236/jsbs.2013.33025    3,780 Downloads   6,167 Views   Citations

ABSTRACT

Napiegrass (Pennisetum purpureum Schumach) was treated with a low-moisture anhydrous ammonia (LMAA) pretreatment by adding an equal weight of water and keeping it under atmospheric ammonia gas at room temperature for four weeks. After the removal of ammonia and washing with water, a simultaneous saccharification and fermentation (SSF) was conducted for the LMAA-pretreated napiergrass (1.33 g) in a buffer solution (8 mL) using a mixture of a cellulase (80 mg) and a xylanase (53 mg) as well as the cell suspension (0.16 mL) of Saccharomyces cerevisiae. Ethanol and xylose resulted in 91.2% and 62.9% yields, respectively. The SSF process was scaled up using LMAA-pretreated napiergrass (100.0 g) to give ethanol (77.2%) and xylose (52.8%). After the removal of ethanol, the pentose fermentation of the SSF solution (40 mL), which contained 1.00 g of xylose, using cell suspension of Escherichia coli KO11 (70 mL) gave 86.3% yield of ethanol. Total ethanol yield reached 68.9% based on xylan (21.4 wt%) and glucan (39.7 wt%) of the LMAA-pretreated napiergrass.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Yasuda, K. Takeo, H. Nagai, T. Uto, T. Yui, T. Matsumoto, Y. Ishii and K. Ohta, "Enhancement of Ethanol Production from Napiergrass (Pennisetum purpureum Schumach) by a Low-Moisture Anhydrous Ammonia Pretreatment," Journal of Sustainable Bioenergy Systems, Vol. 3 No. 3, 2013, pp. 179-185. doi: 10.4236/jsbs.2013.33025.

References

[1] M. Galbe and G. Zacchi, “Pretreatment of Lignocellulosic Materials for Efficient Bioethanol proDuction,” Advances Biochemical Engineering/Biotechnology, Vol. 108, No. 3, 2007, pp. 41-65. doi:10.1007/10_2007_070
[2] P. Alvira, E. Tomás-Pejó, M. Ballesteros and M. J. Negro, “Pretreatment Technologies for an Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review,” Bioresource Technology, Vol. 101, No. 13, 2010, pp. 4851-4861. doi:10.1016/j.biortech.2009.11.093
[3] R. H. Attala and D. L. VanderHart, “Native Cellulose: A Composite of Two Distinct Crystalline Forms,” Science, Vol. 223, No. 4633, 1984, pp. 283-285. doi:10.1126/science.223.4633.283
[4] M. A. Rousselle, M. L. Nelson, C. B. Hassenboehler Jr. and D. C. Legendre, “Liquid-Ammonia and Caustic Mercerization of Cotton Fibers: Changes in Fine Structure and Mechanical Propertied,” Textile Research Journal, Vol. 46, No. 4, 1976, pp. 304-310.
[5] J. J. Creely and R. H. Wade, “Complexes of Diamines with Cellulose: Study of Symmetrical and Unsymmetrical Terminal Group Effects,” Textile Research Journal. Vol. 45, No. 5, 1975, pp. 240-246. doi:10.1177/004051757504500309
[6] J. J. Creely and R. H. Wade, “Complexes of Cellulose with Cyclic Amines and Diamines,” Journal of Polymer Science Part C Polymer Letters, Vol. 16, No. 6, 1978, pp. 291-295. doi:10.1002/pol.1978.130160608
[7] M. Wada, L. Heux, A. Isogai, Y. Nishiyama, H. Chanzy and J. Sugiyama, “Improved Structural Data of Cellulose IIII Prepared in Supercritical Ammonia,” Journal of Macromolecules, Vol. 34, No. 5, 2001, pp. 1237-1243. doi:10.1021/ma001406z
[8] M. Wada, H. Chanzy, Y. Nishiyama and P. Langan, “Cellulose III I Crystal Structure and Hydrogen Bonding by Synchrotron X-Ray and Neutron Fiber Diffraction,” Macromolecules, Vol. 37, No. 23, 2004, pp. 8548-8555. doi:10.1021/ma0485585
[9] H. Chanzy, B. Henrissat, M.Vincendon, S. Tanner and P. S. Belton, “Solid-State 13C-N.M.R. and Electron Microscopy Study on the Reversible Cellulose I→Cellulose IIII Transformation in Valonia,” Carbohydrate. Research, Vol. 160, 1987, pp. 1-11. doi:10.1016/0008-6215(87)80299-9
[10] F. Teymouri, L.Lauerano-Perez, H. Alizadeh and B. E. Dale, “Optimization of the Ammonia Fiber Explosion (AFEX) Treatment Parameters for Enzymatic Hydrolysis of Corn Stover,” Bioresource Technology, Vol. 96, No. 18, 2005, pp. 2014-2018. doi:10.1016/j.biortech.2005.01.016
[11] M. W. Lau, B. E. Dale and V. Balan, “Ethanolic Fermentation of Hydrolysates from Ammonia Fiber Expansion (AFEX) Treated Corn Stover and Distillers Grain without Detoxification and External Nutrient Supplementation,” Biotechnology and Bioengineering, Vol. 99, No. 3, 2008, pp. 529-539. doi:10.1002/bit.21609
[12] K. Igarashi, M. Wada and M. Samejima, “Activation of Crystalline Cellulose to Cellulose IIII Results in Efficient Hydrolysis by Cellobiohydrolase,” FEBS Journal, Vol. 274, No. 7, 2007, pp. 1785-1792. doi:10.1111/j.1742-4658.2007.05727.x
[13] T.-H. Kim and Y. Y. Lee, “Pretreatment of Corn Stover by Soaking in Aqueous Ammonia,” Applied Biochemistry and Biotechnology Part A Enzyme Engineering and Biotechnology, Vol. 124, No. 1-3, 2005, pp.1119-1132. doi:10.1385/ABAB:124:1-3:1119
[14] J.-K. Ko, J.-S. Bak, M.-W. Jung, H.-J. Lee, I.G. Choi and T.-H. Kim, “Ethanol Production from Rice Straw Suing Optimized Aqueous-Ammonia Soaking Pretreatment and Simultaneous Saccharification and Fermentation Processes,” Bioresource Technology, Vol. 100, No. 19, 2009, pp. 4374-4380. doi:10.1016/j.biortech.2009.04.026
[15] C. G. Yoo, N. P. Nghiem, K. B. Hicks and T. H. Kim, “Pretreatment of Corn Stover by Low Moisture Anhydrous Ammonia (LMAA) Process,” Bioresource Technology, Vol. 102, No. 21, 2011, pp. 10028-10034. doi:10.1016/j.biortech.2011.08.057
[16] Y. Ishii, N. Yamaguchi and S. Idota, “Dry Matter Production and in Vitro Dry Matter Digestibility of Tillers among Napiergrass (Pennisetum purpureum Schumach) Varieties,” Grassland Science, Vol. 51, No. 2, 2005, pp. 153-163. doi:10.1111/j.1744-697X.2005.00021.x
[17] K. Rengsirikul, Y. Ishii, K. Kangvansaichol, P. Pripanapong, P. Sripichitt, V. Punsuvon, P. Vaithanomsat, G. Nakamanee and S. Tudsri, “Effects of Inter-Cutting Interval on Biomass Yield, Growth Components and Chemical Composition of Napiergrass (Pennisetum purpureum Schumach) Cultivars as Bioenergy Crops in Thailand,” Grassland Science, Vol. 57, No. 2, 2011, pp. 135-141. doi:10.1111/j.1744-697X.2011.00220.x
[18] M. Yasuda, A. Miura, T. Shiragami, J. Matsumoto, I. Kamei, Y. Ishii and K. Ohta, “Ethanol Production from Non-Pretreated Napiergrass through a Simultaneous Saccharification and Fermentation Process Followed by a Pentose Fermentation with Escherichia coli KO11,” Journal of Bioscience and Bioengineering, Vol. 114, No. 2, 2012, pp. 188-192. doi:10.1016/j.jbiosc.2012.03.011
[19] M. Yasuda, K. Takeo, T. Matsumoto, T. Shiragami, Y. Matsushita, K. Sugamoto and Y. Ishii, “Effectiveness of Lignin-Removal in Simultaneous Saccharification and Fermentation of Napiergrass, Rice Straw, Silbergrass and Bamboo with Different Lignin-Contents,” In: A. K. Chandel and S. Silverio da Silva, Eds., Sustainable Degradation of Lignocellulosic Biomass—Techniques, Applications and Commercialization, InTech, Croatia, Chapter 4, 2013, pp. 91-104.
[20] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templaton and D. Crocker, “Determination of Structural Carbohydrates and Lignin in Biomass,” Technical Report NREL/TP-510-42618, National Renewable Energy Laboratory, Golden, 2010.
[21] M. Yasuda, A. Miura, R. Yuki, Y. Nakamura, T. Shiragami, Y. Ishii and H. Yokoi, “The Effect of TiO2-Photocatalytic Pretreatment on the Biological Production of Ethanol from Lignocelluloses,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 220, No. 2-3, 2011, pp. 195-199. doi:10.1016/j.jphotochem.2011.04.019
[22] S. A. Underwood, M. L. Buszko, K. T. Shanmugam and L. O. Ingram, “Flux through Citrate Synthase Limits the Growth of Ethanologenic Escherichia coli KO11 during Xylose Fermentation,” Applied and Environmental Microbiology, Vol. 68, No. 3, 2002, pp. 1071-1081. doi:10.1128/AEM.68.3.1071-1081.2002
[23] K. Ohta, F. Alterthum and L. O. Ingram, “Effects of Environmental Conditions on Xylose Fermentation by Recombinant Escherichia coli,” Applied and Environmental Microbiology, Vol. 56, No. 2, 1990, pp. 463-465.
[24] K. Ohta, D. S. Beall, J. P. Mejia, K. T. Shanmugam and L. O. Ingram, “Genetic Improvement of Escherichia coli for Ethanol Production: Chromosomal Integration of Zymomonas mobilis Genes Encoding Pyruvate Decarboxylase and Alcohol Dehydrogenase II,” Applied and Environmental Microbiology, Vol. 57, No. 4, 1991, pp. 893-900.
[25] A. Matsushika, H. Inoue, T. Kodaki and S. Sawayama, “Ethanol Production from Xylose in Engineered Saccharomyces cerevisiae Strains: Current State and Perspectives,” Applied Microbiology and Biotechnology, Vol. 84, No. 1, 2009, pp. 37-53. doi:10.1007/s00253-009-2101-x
[26] S. K. Brandon, L. N. Sharma, G. M. Hawkins, W. F. Anderson, C. K. Chambliss and J. Doran-Peterson, “Ethanol and Co-Product Generation from Pressurized Batch Hot Water Pretreated T85 Bermudagrass and Merkeron Napiergrass using Recombinant Escherichia coli as Biocatalyst,” Biomass Bioengineering, Vol. 35, No. 8, 2011, pp. 3667-3673. doi:10.1016/j.biombioe.2011.05.021

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.