An Electrochemical Nitrite Sensor Based on a Multilayer Film of Polyoxometalate


In this work, we have developed an electrochemical sensor for nitrite detection, based on a polyoxometalate (POM) namely mono-lacunary keggin anion [SiW11O39]8﹣ cited as (SiW11). Electrochemical characterization of SiW11 shows two-step reduction processes, with formal potentials of ﹣0.5 V (I) and ﹣0.68 V (II). Oppositely charged polyelectrolyte (poly (allylamine hydrochloride) (PAH)) and (SiW11) were assembled alternately to modify glassy carbon electrode. The electrochemical behavior of the modified electrode was studied in detail using cyclic voltammetry (CV). The results showed that SiW11/PAH/GC electrode present good electrocatalytic activity for the reduction of nitrite. The sensor showed a dynamic range from 100 μM to 3.6 mMof nitrite and no interference from other classical anions. Experimental factors that affect electron-transfer rate in these films, such as pH effect and layers number, were systematically analyzed.

Share and Cite:

Y. Sahraoui, S. Chaliaa, A. Maaref, A. Haddad and N. Jaffrezic-Renault, "An Electrochemical Nitrite Sensor Based on a Multilayer Film of Polyoxometalate," Journal of Sensor Technology, Vol. 3 No. 3, 2013, pp. 84-93. doi: 10.4236/jst.2013.33014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] I. A. Wolf and A. E. Wasserman, “Nitrates, Nitrites, and Nitrosamines,” Science, Vol. 177, No. 4043, 1972, pp. 15-19. doi:10.1126/science.177.4043.15
[2] W. Lijinsky and S. S. Epstein, “Nitrosamines as Environmental Carcinogens,” Nature, Vol. 225, No. 5227, 1970, pp. 21-23. doi:10.1038/225021a0
[3] A. J. Dunham. R. M. Barkley and R. E. Sievers, “Aqueous Nitrite Ion Determination by Selective Reduction and Gas-Phase Nitric-Oxide Chemiluminescence,” Analytical Chemistry, Vol. 67, No. 1, 1995, pp. 220-224. doi:10.1021/ac00097a033
[4] V. Y. Titov and Y. M. Petrenko, “Proposed Mechanism of Nitrite-Induced Methemoglobinemia,” Biochemistry (Moscow), Vol. 70, No. 4, 2005, pp. 473-483.
[5] G. M. Greenway, S. J. Haswell and P. H. Petsul, “The Development of an On-Chip Micro-Flow Injection Analysis of Nitrate with a Cadmium Redactor,” Analytica Chimica Acta, Vol. 387, No. 1, 1999, pp. 1-10. doi:10.1016/S0003-2670(99)00047-1
[6] M. I. H. Helaleh and T. J. Korenaga, “Chromatographic Method for Simultaneous Determination of Nitrate and Nitrite in Human Salivia,” Journal of Chromatography B: Biomedical Sciences and Applications, Vol. 744, No. 2, 2000, pp. 433-437. doi:10.1016/S0378-4347(00)00264-4
[7] W. J. R. Santos, A. L. Sousa, R. C. S. Luz, F. S. Damos, L. T. Kubota, A. A. Tanaka and S. M. C. N. Tanaka, “Amperometric Sensor for Nitrite Using a Glassy Carbon Electrode Modified with Alternating Layers of Iron(III) Tetra-(N-methyl-4-pyridyl)-porphyrin and Cobalt(II) Tetrasulfonated Phthalocyanine,” Talanta, Vol. 70, No. 3, 2006, pp. 588-594. doi:10.1016/j.talanta.2006.01.023
[8] J. E. Newbry and M. P. L. de Haddad, “Amperometric Determination of Nitrite by Oxidation at a Glassy Carbon Electrode,” Analyst, Vol. 110, No. 1, 1985, pp. 81-82. doi:10.1039/an9851000081
[9] M. Trojanowiez, W. Matuszewski and B. Szostek, “Simulataneous Determination of Nitrite and Nitrate in Water Using Flow-Injection Biamperometry,” Analytica Chimica Acta, Vol. 261, No. 1-2, 1992, pp. 391-398. doi:10.1016/0003-2670(92)80218-V
[10] Z. H. Wen and T. F. Kang, “Determination of Nitrite Using Sensors Based on Nickel Phthalocyanine Polymer Modified Electrodes,” Talanta, Vol. 62, No. 2, 2004, pp. 351-355. doi:10.1016/j.talanta.2003.08.003
[11] P. Tau and T. Nyokong, “Electrocatalytic Activity of Arylthio Tetra-Substituted Oxotitanium(IV) Phthalocyanines towards the Oxidation of Nitrite,” Electrochimica Acta, Vol. 52, No. 13, 2007, pp. 4547-4553. doi:10.1016/j.electacta.2006.12.059
[12] J. Obirai and T. Nyokong, “Electrochemical and Catalytic Properties of Chromium Tetra Aminophthalocyanine,” Journal of Electroanalytical Chemistry, Vol. 573, No. 1, 2004, pp. 77-85. doi:10.1016/S0022-0728(04)00341-9
[13] A. Y. Chamsi and A. G. Fogg, “Oxidative Flow Injection Amperometric Determination of Nitrite at an Electrochemically Pre-Treated Glassy Carbon Electrode,” Analyst, Vol. 113, No. 11, 1988, pp. 1723-1727. doi:10.1039/an9881301723
[14] Z. Zhao and X. Cai, “Determination of Trace Nitrite by Catalytic Polarography in Ferrous Iron Thiocyanate Medium,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 252, No. 2, 1988, pp. 361-370. doi:10.1016/0022-0728(88)80222-5
[15] J. N. Barisci and G. G. Wallace, “Detection of Nitrite Using Electrodes Modified with an Electrodeposited Ruthenium-Containing Polymer,” Analytical Letters, Vol. 24, No. 11, 1991, pp. 2059-2073. doi:10.1080/00032719108053033
[16] S. A. Wring and J. P. Hart, “Chemically Modified, Carbon-Based Electrodes and Their Application as Electrochemical Sensors for the Analysis of Biologically Important Compounds,” Analyst, Vol. 117, No. 8, 1992, pp. 1215-1229. doi:10.1039/an9921701215
[17] J. A. Cox, M. E. Tess and T. E. Cummings, “Electrochemistry of Organized Monolayers of Thiols and Related Molecules on Electrodes,” Reviews in Analytical Chemistry, Vol. 15, 1996, pp. 173-223.
[18] J. P. Hart and S. A. Wring, “Recent Developments in the Design and Application of Screen-Printed Electrochemical Sensors for Biomedical, Environmental and Industrial Analyses,” TrAC Trends in Analytical Chemistry, Vol. 16, No. 2, 1997, pp. 89-103. doi:10.1016/S0165-9936(96)00097-0
[19] J. Wang, P. V. A. Pamidi and C. Parrado, “Sol-Gel-Derived Cobalt Phthalocyanine-Dispersed Carbon Composite Electrodes for Electrocatalysis and Amperometric Flow Detection,” Electroanalysis, Vol. 9, No. 12, 1997, pp. 908-911. doi:10.1002/elan.1140091208
[20] R. Ojani, J. B. Raoof and E. Zarei, “Electrocatalytic Reduction of Nitrite Using Ferricyanide; Application for Its Simple and Selective Determination,” Electrochimica Acta, Vol. 52, No. 3, 2006, pp. 753-759. doi:10.1016/j.electacta.2006.06.005
[21] R. Ojani, J. B. Raoof and E. Zarei, “Poly(ortho-toluidine) Modified Carbon Paste Electrode: A Sensor for Electrocatalytic Reduction of Nitrite,” Electroanalysis, Vol. 20, No. 4, 2008, pp. 379-385. doi:10.1002/elan.200704045
[22] K. Jiang, H. Zhang, C. Shannon and W. Zhan, “Preparation and Characterization of Polyoxometalate/Protein Ultrathin Films Grown on Electrode Surfaces Using Layer-by-Layer Assembly,” Langmuir, Vol. 24, No. 7, 2008, pp. 3584-3589. doi:10.1021/la704015j
[23] M. T. Pope, “Heteropoly and Isopoly Oxometalates,” Springer Verlag, New York, 1983, pp. 23-27. doi:10.1007/978-3-662-12004-0
[24] M. T. Pope, In: G. Wilkinson, R. D. Gillard and J. A. McCleverty, Eds., Comprehensive Coordination Chemistry, Pergamon Press, 1987, Vol. 3, pp 1023.
[25] L. C. W. Baker and D. C. Glick, “Present General Status of Understanding of Heteropoly Electrolytes and a Tracing of Some Major Highlights in the History of Their Elucidation,” Chemical Reviews, Vol. 98, No. 1, 1998, pp. 3-50. doi:10.1021/cr960392l
[26] C. L. Hill, “Polyoxometalates,” Chemical Reviews, Vol. 98, No. 1, 1998, pp. 1-2. doi:10.1021/cr960395y
[27] M. Sadakane and E. Steckhan, “Electrochemistry and Electrocatalysis of Polyoxometalates,” Chemical Reviews, Vol. 98, No. 1, 1998, pp. 219-237. doi:10.1021/cr960403a
[28] C. L. Hill and C. M. Prosser-McCartha, “Homogeneous Catalysis by Transition Metal Oxygen Anion Clusters,” Coordination Chemistry Reviews, Vol. 143, 1995, pp. 407-455. doi:10.1016/0010-8545(95)01141-B
[29] B. Keita and L. Nadjo, “Polyoxometalate-Based Homogeneous Catalysis of Electrode Reactions: Recent Achievements,” Journal of Molecular Catalysis A: Chemical, Vol. 262, No. 1-2, 2007, pp. 190-215. doi:10.1016/j.molcata.2006.08.066
[30] R. Neumann, “Chapter 8,” In J. E. Backvall, Ed., Modern Oxidation Methods, Wiley-VCH, Weinheim, 2004, pp. 223-251.
[31] J. F. Keggin, “Structure of the Crystals of 12-Phosphotungstic Acid,” Nature, Vol. 132, 1933, pp. 351-351. doi:10.1038/132351a0
[32] J. F. Keggin, “The Structure and Formula of 12-Phosphotungstic Acid,” Proceedings of the Royal Society London, Series A, Vol. 144, No. 851, 1934, pp. 75-100.
[33] B. Keita, A. Belhouari, L. Nadjo and R. Contant, “Electrocatalysis by Polyoxometalate/Vbpolymer Systems: Reduction of Nitrite and Nitric Oxide,” Journal of Electroanalytical Chemistry, Vol. 381, No. 1-2, 1995, pp. 243-250. doi:10.1016/0022-0728(94)03710-K
[34] U. Kortz, N. K. Al-Kassem, M. G. Savelieff, N. A. Al Kadi and M. Sadakane, “Synthesis and Characterization of Copper, Zinc, Manganese, and Cobalt-Substituted Dimeric Heteropolyanions, [(α-XW9O33)2M3(H2O)3]n- (n = 12, X = AsIII, SbIII, M = Cu2+, Zn2+; n = 10, X = SeIV, TeIV, M = Cu2+) and [(αAsW9O33)2WO(H2O)M2 (H2O)2]10- (M = Zn2+, Mn2+, Co2+),” Inorganic Chemistry, Vol. 40, No. 18, 2001, pp. 4742-4749. doi:10.1021/ic0101477
[35] G. Decher and J. B. Schenoff, “Multilayer Thin Films,” Wiley VCH, Weinheim, 2003, 524p.
[36] Y. Wang, C. Guo, Y. Chen, C. Hu and W. Yu, “Self-Assembled Multilayer Films Based on a Keggin-Type Polyoxometalate and Polyaniline,” Journal of Colloid and Interface Science, Vol. 264, No. 1, 2003, pp. 176-183. doi:10.1016/S0021-9797(03)00392-8
[37] Y. Feng, Z. Han, J. Peng, J. Lu, B. Xue, L. Li, H. Ma and E. Wang, “Fabrication and Characterization of Multilayer Films Based on Keggin-Type Polyoxometalate and Chitosan,” Materials Letters, Vol. 60, No. 13-14, 2006, pp. 1588-1593. doi:10.1016/j.matlet.2005.11.069
[38] S. Li, E. Wang, C. Tian, B. Mao, Y. Song, C. Wang and L. Xu, “In Situ Fabrication of Amino Acid-Polyoxometalate Nanoparticle Functionalized Ultrathin Films and Relevant Electrochemical Property Study,” Materials Research Bulletin, Vol. 43, No. 11, 2008, pp. 2880-2886. doi:10.1016/j.materresbull.2007.12.012
[39] D. M. Fernandes, H. M. Carapuca, C. M. A. Brett and A. M. V. Cavaleiro, “Electrochemical Behaviour of Self-Assembly Multilayer Films Based on Iron-Substituted α-Keggin Polyoxotungstates,” Thin Solid Films, Vol. 518, No. 21, 2010, pp. 5881-5888. doi:10.1016/j.tsf.2010.05.065
[40] D. M. Fernandes, S. M. N. Simoes, H. M. Carapuca and A. M. V. Cavaleiro, “Functionalisation of Glassy Carbon Electrodes with Deposited Tetrabutylammonium Microcrystalline Salts of Lacunary and Metal-Substituted α-Keggin-Polyoxosilicotungstates,” Electrochimica Acta, Vol. 53, No. 22, 2008, pp. 6580-6588. doi:10.1016/j.electacta.2008.04.071
[41] A. Téazéa, G. Hervéa, R. G. Finke and D. K. Lyon, “α-, β-, and γ-Dodecatungstosilicic Acids: Isomers and Related Lacunary Compounds,” In: Inorganic Syntheses, John Wiley & Sons, New York, 1990, pp. 85-96. doi:10.1002/9780470132586.ch16
[42] D. U. Jinyan, L. V. Guiqin, H. U. Changwen and W. U. Huaqiang, “Layer-by-Layer Assembly of Silicotungstate Multilayer Films Modified on Glassy Carbon Electrode and Their Electrochemical Behaviors,” Annali di Chimica, Vol. 97, No. 5-6, 2007, pp. 313-320. doi:10.1002/adic.200790017
[43] L. Cheng, H. Seen, J. Liu and S. Dong, “Electrochemical Behavior of a Series of Undecatungstozincates Monosubstituted by First-Row Transition Metals, ZnW11M(H2O) O39n– (M = Cr, Mn, Fe, Co, Ni, Cu or Zn),” Journal of the Chemical Society, Dalton Transactions, No. 15, 1999, pp. 2619-2626. doi:10.1039/a901846h
[44] C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck and R. Thouvenot, “Vibrational Investigations of Polyoxometalates. 2. Evidence for Anion-Anion Interactions in Molybdenum(VI) and Tungsten(VI) Compounds Related to the Keggin Structure,” Inorganic Chemistry, Vol. 22, No. 2, 1983, pp. 207-216. doi:10.1021/ic00144a006
[45] D. M. Fernandes, C. M. A. Brett and A. M. V. Cavaleiro, “Layer-By-Layer Self-Assembly And Electrocatalytic Properties Of Poly(Ethylenimine)-Silicotungstate Multilayer Composite Films,” Journal of Solid State Electrochemistry, Vol. 15, No. 4, 2011, pp. 811-819. doi:10.1007/s10008-010-1154-1
[46] I. M. Mbomekalle, B. Keita, Y. W. Lu, L. Nadjo, R. Cantant, N. Belai and M. T. Pope, “Synthesis and Electrochemistry of the Monolacunary Dawson-Type Tungstoarsenate [H4AsW17O61]11﹣ and Some First-Row Transition-Metal Ion Derivatives,” European Journal of Inorganic Chemistry, Vol. 2004, No. 20, 2004, pp. 4132-4139. doi:10.1002/ejic.200400186
[47] S. D. Chambers, M. T. McDermott and C. A. Lucy, “Covalently Modified Graphitic Carbon-Based Stationary Phases for Anion Chromatography,” Analyst, Vol. 134, No. 11, 2009, pp. 2273-2280. doi:10.1039/b911988d
[48] J. Liu, L. Cheng, B. Liu and S. Dong, “Covalent Modification of a Glassy Carbon Surface by 4-Aminobenzoic Acid and Its Application in Fabrication of a Polyoxometalates-Consisting Monolayer and Multilayer Films,” Langmuir, Vol. 16, No. 19, 2000, pp. 7471-7476. doi:10.1021/la9913506
[49] B. Keita, F. Girard, L. Nadjo, R. Contant, R. Belghiche and M. Abbessi, “Cyclic Voltammetric Evidence of Facilitation of the Reduction of Nitrite by the Presence of Molybdenum in Fe-or Cu-Substituted Heteropolytungstates,” Journal of Electroanalytical Chemistry, Vol. 508, No. 1-2, 2001, pp. 70-80. doi:10.1016/S0022-0728(01)00516-2
[50] S. Dong, X. Xi and M. Tian, “Study of the Electrocatalytic Reduction of Nitrite with Silicotungstic Heteropolyanion,” Journal of Electroanalytical Chemistry, Vol. 385, No. 2, 1995, pp. 227-233. doi:10.1016/0022-0728(94)03770-4
[51] L. Ruhlmann and G. Genet, “Wells-Dawson-Derived Tetrameric Complexes {K28H8[P2W15Ti3O60.5]4} Electrochemical Behaviour and Electrocatalytic Reduction of Nitrite and of Nitric Oxide,” Journal of Electroanalytical Chemistry, Vol. 568, 2004, pp. 315-321. doi:10.1016/j.jelechem.2004.02.020

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.