Dynamic Knowledge—A Century of Evolution
Georg F. Weber
University of Cincinnati, Cincinnati, USA.
DOI: 10.4236/sm.2013.34036   PDF   HTML     4,460 Downloads   6,954 Views   Citations


The discovery of non-linear systems dynamics has impacted concepts of knowledge to ascribe to it dynamic properties. It has expanded a development that finds its roots more than hundred years ago. Then, certainty was sought in systems of scientific insight. Such absolute certainty was inevitably static as it would be irrevocable once acquired. Although principal limits to the obtainability of knowledge were defined by scientific and philosophical advances from the 1920s through the mid-twentieth century, the knowledge accessible within those boundaries was considered certain, allowing detailed description and prediction within the recognized limits. The trend shifted away from static theories of knowledge with the discovery of the laws of nature underlying non-linear dynamics. The gnoseology of complex systems has built on insights of non-periodic flow and emergent processes to explain the underpinnings of generation and destruction of information and to unify deterministic and indeterministic descriptions of the world. It has thus opened new opportunities for the discourse of doing research.

Share and Cite:

Weber, G. (2013). Dynamic Knowledge—A Century of Evolution. Sociology Mind, 3, 268-277. doi: 10.4236/sm.2013.34036.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Barrow, J. D. (1998). Impossibility. The limits of science and the science of limits. Oxford: Oxford University Press.
[2] Calude, C. S., & Jürgensen, H. (2005). Is complexity a source of incompleteness? Advances in Applied Mathematics, 35, 1-15. http://dx.doi.org/10.1016/j.aam.2004.10.003
[3] Chaitin, G. (1975). A theory of program size formally identical to information theory. Journal of the ACM, 22, 329-340. http://dx.doi.org/10.1145/321892.321894
[4] Chaitin, G. (1999). The unknowable. Singapore City: Springer.
[5] Crutchfield, J. P. (2012). Between order and chaos. Nature Physics, 8, 17-24. http://dx.doi.org/10.1038/nphys2190
[6] Einstein, A. (1954). Remarks on Bertrand Russell’s theory of knowledge. In C. Seelig, & S. Bargmann (Eds.), Ideas and opinions (pp. 18-24). New York: Bonanza Books.
[7] Favre, A., Guitton, H., Guitton, J., Lichnerowicz, A., & Wolff, E. (1988). Chaos and determinism. Turbulence as a paradigm for complex systems converging toward final states. Baltimore: The Johns Hopkins Univeristy Press.
[8] Godel, K. (1931). über formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173-198. http://dx.doi.org/10.1007/BF01700692
[9] Hahn, H., Neurath, O., & Carnap, R. (1929). Wissenschaftliche Weltauffassung. Der Wiener Kreis. Wien: Artur Wolf Verlag.
[10] Hall, N. (1993). Exploring chaos. A guide to the new science of disorder. New York: W. W. Norton & Company.
[11] Heisenberg, W. (1984). Der Teil und das Ganze. Gesprache im Umkreis der Atomphysik (8th ed.). München: Deutscher Taschenbuch Verlag.
[12] Kauffman, S. A. (1993). The origins of order. Self-organization and selection in evolution. New York/Oxford: Oxford University Press.
[13] Kolmogorov, A. N. (1968). Logical basis for information theory and probability theory. IEEE Transactions on Information Theory, 14, 662-664. http://dx.doi.org/10.1109/TIT.1968.1054210
[14] Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130-141. http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[15] McKelvey, B. (1998). Thwarting faddism at the edge of chaos. Brussels: European Institute for Advanced Studies in Management Workshop on Complexity and Organization.
[16] Monod, J. (1985). Zufall und Notwendigkeit. Philosophische Fragen der modernen Biologie (7th ed.). München: Deutscher Taschenbuch Verlag.
[17] Nagel, E., & Newman, J. R. (1958). Godel’s proof. New York: New York University Press.
[18] Popper, K. R. (1935). Logik der Forschung. Zur Erkenntnistheorie der modernen Naturwissenschaft. Wien: Verlag Julius Springer.
[19] Popper, K. R. (1982). Logik der Forschung. Zur Erkenntnistheorie der modernen Naturwissenschaft (7th ed.). Tübingen (J.C.B. Mohr).
[20] Popper, K. R. (1963). Conjectures and refutations. The growth of scientific knowledge. New York: Routledge & Kegan Paul.
[21] Popper, K. R. (1972). Objective knowledge. Oxford: Clarendon Press.
[22] Prigogine, I. (1980). From being to becoming. San Francisco: W.H. Freeman and Company.
[23] Ruelle, D. (1991). Chance and chaos. Princeton: Princeton University Press.
[24] Shalizi, C. R., & Crutchfield, J. P. (2001). Computational mechanics: Pattern and prediction, structure and simplicity. Journal of Statistical Physics, 104, 817-879. http://dx.doi.org/10.1023/A:1010388907793
[25] Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems Technology Journal, 27, 379-423, 623-656.
[26] Shaw, R. (1981). Strange attractors, chaotic behavior, and information flow. Zeitschrift Für Naturforschung, 36a, 80-112.
[27] Still, S., & Crutchfield, J. P. (2007). Structure or noise? Santa Fe Institute Working Paper, 07-08-020. http://arxiv.org/pdf/0708.0654.pdf
[28] Uebel, T. (2008). Writing a revolution: On the production and early reception of the Vienna circle’s manifesto. Perspectives on Science, 16, 70-102. http://dx.doi.org/10.1162/posc.2008.16.1.70
[29] Wolfram, S. (2002). A new kind of science (pp. 715-846). Champaign, IL: Wolfram Media.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.