Nanocellulose-Based Biosensors: Design, Preparation, and Activity of Peptide-Linked Cotton Cellulose Nanocrystals Having Fluorimetric and Colorimetric Elastase Detection Sensitivity


Nanocrystalline cellulose is an amphiphilic, high surface area material that can be easily functionalized and is biocompatible and eco-friendly. It has been used singularly and in combination with other nanomaterials to optimize biosensor design. The attachment of peptides and proteins to nanocrystalline cellulose and their proven retention of activity provide a route to bioactive conjugates useful in designs for point of care biosensors. Elastase is a biomarker for a number of inflammatory diseases including chronic wounds, and its rapid sensitive detection with a facile approach to sensing is of interest. An increased interest in the use of elastase sensors for point of care diagnosis is resulting in a variety of approaches to elsastase sensors utilizing different detection technologies. Here elastase substrate peptide-celluose conjugates synthesized as colorimetric and fluorescent sensors on cotton cellulose nanocrystals are compared. The structure of the sensor peptide-nanocellulose crystals when modeled with computational crystal structure parameters demonstrates the spatio-stoichiometric features of the nanocrystalline surface that allows ligand to active site protease interacttion. An understanding of the structure/function relations of enzyme and conjugate substrate of the peptides covalently attached to nancellulose has implications for enhancing the biomolecular transducer. The potential applications of both fluorescent and colorimetric detection to markers like elastase using peptide cotton cellulose nanocrystals as a transducer surface to model point of care biosensors for protease detection are discussed.

Share and Cite:

J. Edwards, N. Prevost, A. French, M. Concha, A. DeLucca and Q. Wu, "Nanocellulose-Based Biosensors: Design, Preparation, and Activity of Peptide-Linked Cotton Cellulose Nanocrystals Having Fluorimetric and Colorimetric Elastase Detection Sensitivity," Engineering, Vol. 5 No. 9A, 2013, pp. 20-28. doi: 10.4236/eng.2013.59A003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Gouvea, “Biosensors for Health Applications,” In: P. A. Serra, Ed., Biosensors for Health, Environment and Biosecurity, InTech, 2011, Chapter 3.
[2] B. Bohunicky and S. A. Mousa, “Biosensors: The New Wave in Cancer Diagnosis,” Nanotechnology Science and Applications, Vol. 4, No. 1, 2011, pp. 1-10.
[3] T. R. Dargaville, B. L. Farrugia, J. A. Broadbent, S. Pace and Z. Upton, “Sensors and Imaging for Wound Healing: a Review,” Biosensors and Bioelectronics, Vol. 41, 2013, pp. 30-42.
[4] J. Tamayo, P. M. Kosaka, J. J. Ruz, A. S. Paulo and M. Calleja, “Biosensors Based on Nanomechanical Systems,” Chemical Society Review, Vol. 42, No. 3, 2013, pp. 1287-1311. doi:10.1039/c2cs35293a
[5] V. Incani, C. Danumah and Y. Boluk, “Nanocomposites of Nanocrystalline Cellulose for Biosensor Applications,” Proceedings of the 2012 NSTI Nanotechnology Conference and Expo, Santa Clara, 18-21 June 2012, pp. 13-16.
[6] Y. Yue, C. Zhou, A. D. French, G. Xia, G. Han, A. Wang and Q. Wu, “Comparative Properties of Cellulose NanoCrystals from Native and Mercerized Cotton Fibers,” Cellulose, Vol. 19, No. 4, 2012, pp. 1173-1187. doi:10.1007/s10570-012-9714-4
[7] K. E. Shopsowitz, H. Qi, W. Y. Hamad and M. J. MacLachlan, “Free Standing Mesoporous Silica Films with Tunable Chiral Nematic Structures,” Nature, Vol. 468, No. 7322, 2010, pp. 422-425.
[8] E. E. Brown, D. Hu, N. Abu Lail and X. Zhang, “Potential of Nanocrystalline Cellulose-Fibrin Nanocomposites for Artificial Graft Applications,” Biomacromolecules, Vol. 14, No. 4, 2013, pp. 1063-1071 doi:10.1021/bm3019467
[9] D. Klemm, F. Kramer, S. Moritz, T. Lindstrom, M. Ankerfors, D. Gray and A. Dorris, “Nanocelluloses: A New Family of Nature-Based Materials,” Angewandte Chemie International Edition, Vol. 50, No. 24, 2011, pp. 5438-5466.
[10] Y. Habibi, L. A. Lucia and O. J. Rojas, “Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications,” Chemical Reviews, Vol. 110, 2010, pp. 3479-3500. doi:10.1021/cr900339w
[11] H. Kang, R. Liu and Y. Huang, “Cellulose Derivatives and Graft Copolymers as Blocks for Functional Materials,” Polymer International, Vol. 62, No. 3, 2013, pp. 338-344. doi:10.1002/pi.4455
[12] W. Z. Xu and J. F. Kadla, “Honeycomb Films of Cellulose Azide: Molecular Structure and Formation of Porous Films,” Langmuir, Vol. 29, No. 2, 2012, pp. 727-733. doi:10.1021/la303835e
[13] V. Incani, C. Danumah and Y. Boluk, “Nanocomposites of Nanocrystalline Cellulose for Enzyme Immobilization,” Cellulose, Vol. 20, No. 1, 2013, pp. 191-200. doi:10.1007/s10570-012-9805-2
[14] A. J. Ruiz-Sanchez, M. I. Montanez, C. Mayorga, M. J. Torres, N. S. Kehr, Y. Vida, D. Collado, F. Najera, L. De Cola and E. Perez-Inestrosa, “Dendrimer-Modified Solid Supports: Nanostructured Materials With Potential Drug Allergy Diagnostic Applications,” Current Medicinal Chemistry, Vol. 19, No. 29, 2012, pp. 4942-4954. doi:10.2174/0929867311209024942
[15] L. C. Clark and C. Lyons, “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery,” Annals of the New York Academy of Sciences, Vol. 102, No. 1, 1962, pp. 29-45.
[16] Y.-H. Kim, S. Park, K. Won, H. J. Kim and S. H. Lee, “Bacterial Cellulose—Carbon Nanotube Composite as a Biocompatible Electrode for the Direct Electron Transfer of Glucose Oxidase,” Journal of Chemical Technology & Biotechnology, Vol. 88, No. 6, 2013, pp. 1067-1070. doi:10.1002/jctb.3939
[17] M. Li, Y. Qi, Y. Ding, Q. Zhao, J. Fei and J. Zhou, “Electrochemical Sensing Platform Based on the Quaternized Cellulose Nanoparticles/Acetylene Black/Enzymes Composite Film,” Sensors and Actuators B: Chemical, Vol. 168, 2012, pp. 329-335. doi:10.1016/j.snb.2012.04.030
[18] J. V. Edwards, N. Prevost, B. Condon, A. French and Q. Wu, “Immobilization of Lysozyme-Cellulose AmideLinked Conjugates on Cellulose I and Ii Cotton Nanocrystalline Preparations,” Cellulose, Vol. 19, No. 2, 2012, pp. 495-506. doi:10.1007/s10570-011-9637-5
[19] B. Thallinger, E. N. Prasetyo, G. S. Nyanhongo and G. M. Guebitz, “Antimicrobial Enzymes: An Emerging Strategy to Fight Microbes and Microbial Biofilms,” Biotechnology Journal, Vol. 8, No. 1, 2013, pp. 97-109. doi:10.1002/biot.201200313
[20] R. Kargl, T. Mohan, S. Kostler, S. Spirk, A. Doliska, K. Stana-Kleinschek and V. Ribitsch, “Functional Patterning of Biopolymer Thin Films Using Enzymes and Lithographic Methods,” Advanced Functional Materials, Vol. 23, No. 3, 2013, pp. 308-315. doi:10.1002/adfm.201200607
[21] L. Yilun, S. Nartker, M. Wiederoder, H. Miller, D. Hochhalter, L. T. Drzal and E. C. Alocilja, “Novel Biosensor Based on Electrospun Nanofiber and Magnetic Nanoparticles for the Detection of E. Coli O157:H7,” IEEE Transactions on Nanotechnology, Vol. 11, No. 4, 2012, pp. 676-681.
[22] D. Sharp, S. Forsythe and J. Davis, “Carbon Fibre Composites: Integrated Electrochemical Sensors for Wound Management,” Journal of Biochemistry, Vol. 144, No. 1, 2008, pp. 87-93.
[23] E. Lam, K. B. Male, J. H. Chong, A. C. W. Leung and J. H. T. Luong, “Applications of Functionalized and Nanoparticle-Modified Nanocrystalline Cellulose,” Trends in Biotechnology, Vol. 30, No. 5, 2012, pp. 283-290. doi:10.1016/j.tibtech.2012.02.001
[24] K. A. Mahmoud, J. A. Mena, K. B. Male, S. Hrapovic, A. Kamen and J. H. T. Luong, “Effect of Surface Charge on the Cellular Uptake and Cytotoxicity of Fluorescent Labeled Cellulose Nanocrystals,” ACS Applied Materials & Interfaces, Vol. 2, No. 10, 2010, pp. 2924-2932. doi:10.1021/am1006222
[25] Q. Yang and X. Pan, “A Facile Approach for Fabricating Fluorescent Cellulose,” Journal of Applied Polymer Science, Vol. 117, No. 6, 2010, pp. 3639-3644.
[26] M. L. Hassan, C. M. Moorefield, H. S. Elbatal, G. R. Newkome, D. A. Modarelli and N. C. Romano, “Fluorescent Cellulose Nanocrystals Via Supramolecular Assembly of Terpyridine-Modified Cellulose Nanocrystals and Terpyridine-Modified Perylene,” Materials Science and Engineering: B, Vol. 177, No. 4, 2012, pp. 350-358. doi:10.1016/j.mseb.2011.12.043
[27] I. Filpponen, H. Sadehgifar and D. A. Argyropoulos, “Photoresponsive Cellulose Nanocrystals,” Nanomaterials and Nanotechnology, Vol. 1, No. 1, 2011, pp. 34-43.
[28] S. Barazzouk and C. Daneault, “Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization,” Nanomaterials, Vol. 2, No. 2, 2012, pp. 187-205.
[29] C. Araújo, A. Nakhai, M. Ruda, R. Slattegard, P. Gatenholm and H. Brumer, “A General Route to Xyloglucan-Peptide Conjugates for the Activation of Cellulose Surfaces,” Carbohydrate Research, Vol. 354, 2012, pp. 116-120. doi:10.1016/j.carres.2012.03.038
[30] B. Korkmaz, S. Attucci, C. Epinette, E. Pitois, M.-L. Jourdan, L. Juliano and F. Gauthier, “Measurement of Neutrophil Elastase, Proteinase 3, and Cathepsin G Activities Using Intramolecularly Quenched Fluorogenic Substrates,” Leucocytes, Vol. 844, 2012, pp. 125-138. doi:10.1007/978-1-61779-527-5_9
[31] J. V. Edwards, N. Prevost, K. Sethumadhavan, A. Ullah and B. Condon, “Peptide Conjugated Cellulose Nanocrystals with Sensitive Human Neutrophil Elastase Sensor Activity,” Cellulose, Vol. 20, No. 3, 2013, pp. 1223-1235. doi:10.1007/s10570-013-9901-y
[32] Y. Habibi, H. Chanzy and M. Vignon, “Tempo-Mediated Surface Oxidation of Cellulose Whiskers,” Cellulose, Vol. 13, No. 6, 2006, pp. 679-687. doi:10.1007/s10570-006-9075-y
[33] G. S. Schultz, G. Ladwig and A. Wysocki, “Extra-cellular Matrix: Review of its Roles in Acute and Chronic Wounds,” 2005.
[34] S. E. Herrick, P. Sloan, M. McGurk, L. Freak, C. N. McCollum and M. W. Ferguson, “Sequential Changes in Histologic Pattern and Extracellular Matrix Deposition During the Healing of Chronic Venous Ulcers,” The American Journal of Pathology, Vol. 141, No. 5, 1992 pp. 1085-1095.
[35] S. Herrick, G. Ashcroft, G. Ireland, M. Horan, C. McCollum and M. Ferguson, “Up-Regulation of Elastase in Acute Wounds of Healthy Aged Humans and Chronic Venous Leg Ulcers Are Associate with Matrix Degradation,” Laboratory Investigation, Vol. 77, No. 3, 1997, pp. 281-288.
[36] F. Grinnell and M. Zhu, “Fibronectin Degradation in Chronic Wounds Depends on the Relative Levels of Elastase, Alpha1-Proteinase Inhibitor and Alpha2-Macroglobulin,” Journal of Investigative Dermatology, Vol. 106, No. 2, 1996, pp. 335-341. doi:10.1111/1523-1747.ep12342990
[37] F. Grinnell and M. Zhu, “Identification of Neutrophil Elastase as the Proteinase in Burn Wound Fluid Responsible for the Degradation of Fibronectin,” Journal of Investigative Dermatology, Vol. 103, No. 2, 1994, pp. 155161.
[38] D. R. Yager, S. M. Chen, S. I. Ward, O. O. Olutoye, R. F. Diegelmann and I. K. Cohen, “Ability of Chronic Wound Fluids to Degrade Peptide Growth Factors Is Associated with Increased Levels of Elastase Activity and Diminished Levels of Proteinase Inhibitors,” Wound Repair and Regeneration, Vol. 5, No. 1, 1997, pp. 23-32. doi:10.1046/j.1524-475X.1997.50108.x
[39] L. Ekerot and K. Ohlsson, “Interactions of Granulocyte Proteases with Inhibitors in Rheumatoid Arthritis,” Advances in Experimental Medicine and Biology, Vol. 167, 1984, pp. 335-344. doi:10.1007/978-1-4615-9355-3_28
[40] S. D. Shapiro, “Proteinases in Chronic Obstructive Pulmonary Disease,” Biochemical Society Transactions, Vol. 30, No. 2, 2002, pp. 98-102. doi:10.1042/BST0300098
[41] A. B. Groeneveld, P. G. Raijmakers, C. E. Hack and G. T. Thijis, “Interleukin 8-Related Neutrophil Elastase and the Severity of the Adult Respiratory Distress Syndrome,” Cytokine, Vol. 7, No. 7, 1995, pp. 746-752. doi:10.1006/cyto.1995.0089
[42] T. Oda, O. Hotta, Y. Taguma, H. Kitamura, K. Sudo, I. Horigome, S. Chiba, N. Yoshizawa and H. Nagura, “Involvement of Human Neutrophil Elastase in Crescentic Glomerulonephritis,” Human Pathology, Vol. 28, No. 6, 1997, pp. 720-728. doi:10.1016/S0046-8177(97)90182-9
[43] P. Sjo, “Neutrophil Elastase Inhibitors: Recent Advances in the Development of Mechanism-Based and Nonelectrophilic Inhibitors,” Future Medicinal Chemistry, Vol. 4, No. 5, 2012, pp. 651-660.
[44] T. Stevens, K. Ekholm, M. Granse, M. Lindahl, V. Kozma, C. Jungar, T. Ottosson, H. Falk-Hakansson, A. Churg, J. L. Wright, H. Lal and A. Sanfridson, “AZD 9668: Pharmacological Characterization of a Novel Oral Inhibitor of Neutrophil Elastase,” Journal of Pharmacology and Experimental Therapeutics, Vol. 339, No. 1, 2011, pp. 313-320. doi:10.1124/jpet.111.182139
[45] A. Orem, O. Deger, G. Cimsit and S. Bahadir, “Plasma Polymorphonuclear Leukocyte Elastase Levels and Its Relation to Disease Activity in Psoriasis,” Clinica Chimica Acta, Vol. 264, No. 1, 1997, pp. 49-56. doi:10.1016/S0009-8981(97)00072-7
[46] C. Jaffray, J. Yang, G. Carter, C. Mendez and J. Norman, “Pancreatic Elastase Activates Pulmonary Nuclear Factor Kappa B and Inhibitory Kappa B, Mimicking Pancreatitis-Associated Adult Respiratory Distress Syndrome,” Surgery, Vol. 128, No. 2, 2000, pp. 225-231. doi:10.1067/msy.2000.107419
[47] F. B. Smith, F. G. R. Fowkes, A. Rumley, A. J. Lee, G. D. Lowe and C. M. Hau, “Tissue Plasminogen Activator and Leucocyte Elastase as Predictors of Cardiovascular Events in Subjects with Angina Pectoris: Edinburgh Artery Study,” European Heart Journal, Vol. 21, No. 19, 2000, pp. 1607-1613.
[48] R. K. Basu, S. W. Standage, N. Cvijanovich, G. L Allen, N. J. Thomas, R. J. Freishtat, N. Anas, K. Meter, P. A. Checchia, R. Lin, T. P. Shanley, M. T. Bigham, D. S. Wheeler, P. Devarajan, S. L. Goldstein and H. R. Wong, “Identification of Candidate Serum Biomarkers for Severe Septic Shock-Associated Kidney Injury via Microarray,” Critical Care, Vol. 15, No. 6, 2011, p. R273. doi:10.1186/cc10554
[49] S. F. Kingsmore, N. Kennedy, H. L. Halliday, J. C. Van Velkinburgh, S. Zhong, V. Gabriel, J. Grant, W. D. Beavis, V. T. Tchemev, L. Perlee, S. Lejnine, B. Grimwade, M. Sorette and J. D. Edgar, “Identification of Diagnostic Biomarkers for Infection in Premature Neonates,” Molecular and Cellular Proteomics, Vol. 7, 2008, pp. 18631875. doi:10.1074/mcp.M800175-MCP200
[50] C. L. Ren, H. Desai, M. Platt and M. Dixon, “Clinical Outcomes in Infants with Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Related Metabolic Syndrome,” Pediatric Pulmonology, Vol. 46, No. 11, 2011, pp. 1079-1084. doi:10.1002/ppul.21475
[51] J. L. Stair, M. Watkinson and S. Krause, “Sensor Materials for the Detection of Proteases,” Biosensors and Bioelectronics, Vol. 24, No. 7, 2009, pp. 2113-2118. doi:10.1016/j.bios.2008.11.002
[52] A. Hasmann, U. Gewessler, E. Hulla, K. P. Schneider, B. Binder, A. Francesko, T. Tzanov, M. Schintler, J. Van der Palen, G. M. Guebitz and E. Wehrschuetz-Sigl, “Sensor Materials for the Detection of Human Neutrophil Elastase and Cathepsin G Activity in Wound Fluid,” Experimental Dermatology, Vol. 20, No. 6, 2011, pp. 508-513. doi:10.1111/j.1600-0625.2011.01256.x
[53] J. V. Edwards, S. Caston-Pierre, A. F. Bopp and W. Goynes, “Detection of Human Neutrophil Elastase with Peptide-Bound Cross-Linked Ethoxylate Acrylate Resin Analogs,” The Journal of Peptide Research, Vol. 66, No. 4, 2005, pp. 160-168. doi:10.1111/j.1399-3011.2005.00284.x
[54] J. V. Edwards, S. Caston-Pierre, P. Howley, B. Condon and J. Arnold, “A Bio-Sensor for Human Neutrophil Elastase Employs Peptide-Para-Nitroanilide Cellulose Conjugates,” Sensor Letters, Vol. 6, No. 4, 2008, pp. 518523. doi:10.1166/sl.2008.418
[55] J.-L. He, Z.-S. Wu, S.-B. Zhang, G.-L. Shen and R.-Q. Yu, “Fluorescence Aptasensor Based on CompetitiveBinding for Human Neutrophil Elastase Detection,” Talanta, Vol. 80, No. 3, 2010, pp. 1264-1268. doi:10.1016/j.talanta.2009.09.019
[56] M. Henares, N. Takashi, S. Yoshida, F. Terabe, R. Mizutani, R. Sikizawa and H. Hisamoto, “Integration of Multianayte Sensing Function on a Capillary-Assembled Microchip: Simultaneous Determination of Ion Concentration and Enzymatic Activities by ‘Drop-and-Sip’ Technique,” Analytical Chemistry, Vol. 79, No. 3, 2007, pp. 908-915. doi:10.1021/ac061245i
[57] N. Sorde, G. Das and S. Matile, “Enzyme Screening with Synthetic Multifunctional Pores: Focus on Biopolymers,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 21, 2003, pp. 11964-11969. doi:10.1073/pnas.2132894100
[58] G. Das, P. Talukdar and S. Matile, “Fluorometric Detection of Enzyme Activity with Synthetic Supramolecular Pores,” Science, Vol. 298, No. 5598, 2002, pp. 16001602. doi:10.1126/science.1077353
[59] B. Shen, S. Shimmon, M. M. Smith and P. J. Ghosh, “Biosensor Analysis of the Molecular Interactions of Pentosan Polysulfate and of Sulfated Glycosaminoglycans with Immobilized Elastase, Hyaluronidase and Lysozyme Using Surface Plasmon Resonance (SPR) Technology,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 31, No. 1, 2003, pp. 83-93. doi:10.1016/S0731-7085(02)00606-4
[60] A. J. Steuerwald, J. D. Villeneuve, L. Sun and J. A. Stenken, “In Vitro Characterization of an in Situ Microdialysis Sampling Assay for Elastase Activity Detection,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 40, No. 5, 2006, pp. 1041-1047. doi:10.1016/j.jpba.2005.05.036
[61] International Consensus, “The Role of Proteases in Wound Diagnostics. An Expert Working Group Review,” Wounds International, London, 2011.
[62] D. R. Yager and B. C. Nwomeh, “The Proteolytic Environment of Chronic Wounds,” Wound Repair and Regeneration, Vol. 7, No. 6, 1999, pp. 433-441. doi:10.1046/j.1524-475X.1999.00433.x
[63] M. J. Castillo, K. Nakajima, M. Zimmerman and J. C. Powers, “Sensitive Substrates for Human Leuckocyte and Porcine Pancreatic Elastase: A Study of the Merits of Various Chromophoric and Fluorogenic Leaving Groups in Assays for Serine Proteases,” Analytical Biochemistry, Vol. 99, No. 1, 1979, pp. 53-64. doi:10.1016/0003-2697(79)90043-5

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.