Evaluation of Offshore Wastewater Outfall and Diffuser for Onondaga Lake, NY

Abstract

Outfall alternatives are evaluated for a municipal wastewater treatment facility that discharges effluent at the shoreline of an urban lake. Occurrence of plumes of poorly diluted effluent in adjoining portions of the lake is described. Alternatives considered include outfalls over a range of depth and various diffuser designs. Benefits and impacts on lake stratification and dissolved oxygen are evaluated for an array of design alternatives with a model which links a far field hydrothermal and transport submodel with a near field buoyant plume submodel. Outfall design features are described that: 1) reduce shoreline discharge of bypass flow of partially treated wastewater during major runoff events; 2) eliminate plumes of poorly diluted effluent; and 3) reduce loading of the effluent to the upper waters. A deep (10 to 14 m) outfall with a multiport diffuser would reduce the loading of the facility’s effluent to the upper waters by approximately 40%, without noteworthy impact on stratification or dissolved oxygen.

Share and Cite:

E. Owens, S. Effler, D. Matthews and A. Prestigiacomo, "Evaluation of Offshore Wastewater Outfall and Diffuser for Onondaga Lake, NY," Journal of Water Resource and Protection, Vol. 5 No. 9A, 2013, pp. 1-15. doi: 10.4236/jwarp.2013.59A001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. B. Fischer, E. J. List, J. Imberger, R. C. Koh and N. H. Brooks, “Mixing in Inland and Coastal Waters,” Academic Press, New York, 1979.
[2] S. Li and D. O. Hodgins, “A Dynamically Coupled Outfall Plume-Circulation Model for Effluent Dispersion in Burrard Inlet, British Columbia,” Journal of Environmental Engineering and Science, Vol. 3, No. 5, 2004, pp. 433-449. doi:10.1139/s04-039
[3] D. A. Chin, “Water Quality Engineering in Natural Systems,” Wiley-Interscience, Hoboken, 2006. doi:10.1002/0471784559
[4] G. H. Jirka and J. H. W. Lee, “Waste Disposal in the Ocean,” Water Quality and Its Control, IAHR Design Guide for Hydraulic Structures, Balkema, Rotterdan, The Netherlands, 1994, pp. 193-242.
[5] B. R. Morton, G. Taylor and J. S. Turner, “Turbulent Gravitational Convection from Maintained and Instantaneous Sources,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 234, No. 1196, 1956, pp. 1-23. doi:10.1098/rspa.1956.0011
[6] NYSDEC (New York State Department of Environmental Conservation), “Total Maximum Daily Loads and Water Quality Based Effluent Limits,” Division of Water Technical and Operational Guidance Document 1.3.1, Albany, New York, 1996.
[7] USEPA (United States Environmental Protection Agency), “Compilation of EPA Mixing Zone Documents,” EPA-823-R-06-003, Office of Water, Washington DC, 2006.
[8] Y. W. Park, S. G. Hong and S. K. Kwun, “Interfacing Near and Far-Field Models to Simulate Submerged Freshwater Discharge Mixing in Seawater,” Coastal Engineering Journal, Vol. 49, No. 3, 2008, pp. 337-356. doi:10.1142/S0578563407001642
[9] X. Y. Zhang and E. E. Adams, “Prediction of Near Field Plume Characteristics Using Far Field Circulation Model,” Journal of Hydraulic Engineering, Vol. 125, No. 3, 1999, pp. 233-241. doi:10.1061/(ASCE)0733-9429(1999)125:3(233)
[10] T. Bleninger and G. H. Jirka, “Near- and Far-Field Model Coupling Methodology for Wastewater Discharges,” In: J. H. W. Lee and K. M. Lam, Eds., Environmental Hydraulics and Sustainable Water Management, Taylor & Francis, London, 2004, pp. 447-453.
[11] K. Choi and J. Lee, “Distributed Entrainment Sink Approach for Modeling Mixing and Transport in the Intermediate Field,” Journal of Hydraulic Engineering, Vol. 133, No. 7, 2007, pp. 804-815. doi:10.1061/(ASCE)0733-9429(2007)133:7(804)
[12] G. H. Jirka, “Integral Model for Turbulent Buoyant Jets in Unbounded Stratified Flows Part 2: Plane Jet Dynamics Resulting from Multiport Diffuser Jets,” Environmental Fluid Mechanics, Vol. 6, No. 1, 2006, pp. 43-100. doi:10.1007/s10652-005-4656-0
[13] G. H. Jirka, “Integral Model for Turbulent Buoyant Jets in Unbounded Stratified Flows. Part I: Single Round Jet,” Environmental Fluid Mechanics, Vol. 4, No. 1, 2004, pp. 1-56. doi:10.1023/A:1025583110842
[14] S. M. O’Donnell, D. M. O’Donnell, E. M. Owens, S. W. Effler, A. R. Prestigiacomo and D. M. Baker, “Variations in the Stratification Regime of Onondaga Lake: Patterns, Modeling, and Implications,” Fundamental and Applied Limnology, Vol. 176, No. 1, 2010, pp. 11-27. doi:10.1127/1863-9135/2010/0176-0011
[15] S. M. Doerr, S. W. Effler, K. A. Whitehead, M. T. Auer, M. G. Perkins and T. M. Heidtke, “Chloride Model for Polluted Onondaga Lake,” Water Research, Vol. 28, No. 4, 1994, pp. 849-861. doi:10.1016/0043-1354(94)90091-4
[16] H. C. Rowell, “Paleolimnology of Onondaga Lake: The History of Anthropogenic Impacts on Lake Water Quality,” Lake and Reservoir Management, Vol. 12, No. 1, 1996, pp. 35-45. doi:10.1080/07438149609353995
[17] S. W. Effler, “Limnological and Engineering Analysis of a Polluted Urban Lake. Prelude to Environmental Management of Onondaga Lake, New York,” Springer-Verlag, New York, 1996. doi:10.1007/978-1-4612-2318-4
[18] Onondaga Lake Restoration Act of 1989, “Hearing 101-80,” 1989.
[19] S. W. Effler and S. M. O’Donnell, “A Long-Term Record of Epilimnetic Phosphorus Patterns in Recovering Onondaga Lake, New York,” Fundamental and Applied Limnology, Vol. 177, No. 1, 2010, pp. 1-18. doi:10.1127/1863-9135/2010/0177-0001
[20] S. C. Chapra, “Surface Water-Quality Modeling,” McGraw-Hill, New York, 1997.
[21] S. W. Effler, M. T. Auer, F. Peng, M. G. Perkins, S. M. O’Donnell, A. R. Prestigiacomo, D. A. Matthews, P. A. DePetro, R. S. Lambert and N. M. Minott, “Factors Diminishing the Effectiveness of Phosphorus Loading From Municipal Waste Effluent: Critical Information for TMDL Analyses,” Water Environment Research, Vol. 84, No. 3, 2012, pp. 254-264. doi:10.2175/106143012X13280358613426
[22] S. W. Effler, A. R. Prestigiacomo, D. A. Matthews, E. M. Michelanko and D. J. Hughes, “Partitioning Phosphorus Concentrations and Loads in Tributaries of Recovering Urban Lake,” Lake and Reservoir Management, Vol. 25, No. 3, 2009, pp. 225-239. doi:10.1080/07438140903032416
[23] S. W. Effler, S. M. O’Donnell, D. A. Matthews, C. M. Matthews, D. M. O’Donnell, M. T. Auer and E. M. Owens, “Limnological and Loading Information and a Phosphorus Total Maximum Daily Load Analysis for Onondaga Lake,” Lake and Reservoir Management, Vol. 18, No. 2, 2002, pp. 87-108. doi:10.1080/07438140209354140
[24] R. K. Gelda, E. M. Owens, D. A. Matthews, S. W. Effler, S. C. Chapra, M. T. Auer and R. K. Gawde, “Modeling Effects of Sediment Diagenesis on Recovery of Hypolimnetic Oxygen,” Journal of Environmental Engineering, Vol. 139, No. 1, 2013, pp. 44-53. doi:10.1061/(ASCE)EE.1943-7870.0000594
[25] A. R. Prestigiacomo, S. W. Effler, D. A. Matthews and L. J. Coletti, “Nitrate and Bisulfide: Monitoring and Patterns in Onondaga Lake, New York, Following Implementation of Nitification Treatment,” Water Environment Research, Vol. 81, No. 5, 2009, pp. 466-475. doi:10.2175/106143008X357156
[26] R. L. Doneker and G. H. Jirka, “CORMIX User Manual: A Hydrodynamic Mixing Zone Model and Decision Support System for Pollutant Discharges into Surface Waters,” US Environmental Protection Agency, Washington DC, 2007.
[27] E. M. Owens and S. W. Effler, “Modeling the Impacts of a Proposed Hypolimnetic Wastewater Discharge on Stratification and Mixing in Onondaga Lake,” Lake and Reservoir Management, Vol. 12, No. 1, 1996, pp. 195-206. doi:10.1080/07438149609354008
[28] E. M. Owens, “Development and Testing of One-Dimensional Hydrothermal Models of Cannonsville Reservoir,” Lake and Reservoir Management, Vol. 14, No. 2-3, 1998, pp. 172-185. doi:10.1080/07438149809354329
[29] Metcalf and Eddy, Inc., “Wastewater Engineering: Collection and Pumping of Wastewater,” McGraw-Hill Book Co., New York, 1981.
[30] R. K. Gelda, S. W. Effler and S. M. O’Donnell, “Probabilistic Model of Ammonia and Toxicity Status for Urban Lake,” Journal of Water Resources Planning and Management, Vol. 127, No. 5, 2001, pp. 337-347. doi:10.1061/(ASCE)0733-9496(2001)127:5(337)
[31] E. M. Owens, S. W. Effler, S. M. Doerr, R. K. Gelda, E. M. Schneiderman, D. G. Lounsbury and C. L. Stepczuk, “A Strategy for Reservoir Model Forecasting Based on Historic Meteorological Conditions,” Lake and Reservoir Management, Vol. 14, No. 2-3, 1998, pp. 322-331. doi:10.1080/07438149809354340
[32] NYSDEC (New York State Department of Environmental Conservation), “Total Maximum Daily Load (TMDL) for Phosphorus in Onondaga Lake,” New York State Department of Environmental Conservation, Division of Water, Albany, New York, 2012.
[33] P. N. Froelich, “Kinetic Control of Dissolved Phosphate in Natural Rivers and Estuaries: A Primer on the Phosphate Buffer Mechanism,” Limnology and Oceanography, Vol. 33, No. 4, 1988, pp. 649-668. doi:10.4319/lo.1988.33.4_part_2.0649
[34] K. R. Reddy, R. H. Kadlec, E. Flaig and P. M. Gale, “Phosphorus Retention in Streams and Wetlands: A Review,” Critical Reviews in Environmental Science and Technology, Vol. 29, No. 1, 1999, pp. 83-146. doi:10.1080/10643389991259182
[35] D. A. Matthews, D. B. Babcock, J. G. Nolan, A. R. Prestigiacomo, S. W. Effler, C. T. Driscoll, S. G. Todorova and K. M. Kuhr, “Whole-Lake Nitrate Addition for Control of Methylmercury in Onondaga Lake, NY,” Environmental Research, Vol. 125, 2013, pp. 52-60. doi:10.1016/j.envres.2013.03.011
[36] E. M. Owens, S. W. Effler, A. R. Prestigiacomo, D. A. Matthews and S. M. O’Donnell, “Observations and Modeling of Stream Plunging in an Urban Lake,” Journal of the American Water Resources Association, Vol. 48, No. 4, 2012, pp. 707-721. doi:10.1111/j.1752-1688.2012.00646.x
[37] E. M. Owens, S. W. Effler, D. M. O’Donnell and D. A. Matthews, “Modeling the Fate and Transport of Plunging Inflows to Onondaga Lake,” Journal of the American Water Resources Association, 2013, in Press.
[38] K. Fent, A. A. Weston and D. Caminada, “Ecotoxicology of Human Pharmaceuticals,” Aquatic Toxicology, Vol. 76, 2006, pp. 122-159. doi:10.1016/j.aquatox.2005.09.009

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.