Tuberculosis-related miRNAs have potential as disease biomarkers


Background: More effective biomarkers for use intuberculosis prevention,diagnosis, and treatmentare urgently needed. The potential of miRNAsfor use as biomarkers of human disease has received much attention; however, suitable miRNA biomarkers for use in tuberculosis (TB) diagnosis and treatment have not yet been identified. Methods: We used human miRNA arrays to identify miRNAs in Peripheral Blood Mononuclear Cells (PBMCs) that are differentially expressed in subjects with active disease, those with latent TB infections (LTBI) and healthy individuals. The relationship between differentially-expressed miRNAs and mRNAs was examined using Tar- getScanS, Pic-Tar and miRanda. The expression profiles of selected miRNAs in subjects with active disease, those with LTBI and healthy individuals were validated by qRT-PCR. Results: miRNA array analysis of PBMCs from subjects with active disease, those with LTBI and healthy individuals identified 26 differentially-expressed miRNAs. Analysis of gene expression levels in THP-1 cells using mRNA arrays identified 87 differentially-expressed genes, 80 of which were up-regulated (ratio >2) and 7 of which were down-regulated (ratio <1/2).In silico miRNA target prediction identified target mRNAs for 15of the 26 differentially-expressed miRNAs. Differentially-expressed miRNAs were identified for 90 of the 178 differentially-expressed genes. has-miR-21* and has-miR-26b had the highestnumbers of differentially-expressed target mRNAs.PCR validation of has-miR-21* and has-miR- 15b* demonstrated the fidelity of our microarray results. Conclusion: Whole-genome transcriptional profiling identified differentially-expressed mRNAs and miRNAs. Differentially-expressed miRNAs combined with predicted differentially-expressed mRNAs from the same whole-genome transcriptional profiling may be used as the new ways to better understand TB disease.This discovery of differentially-expressed miRNAsand mRNAs provides a resource for further studies on the role of miRNAs in tuberculosis.

Share and Cite:

Xu, Y. , Ren, W. , Liu, Y. , Zhang, X. , Li, C. and Sun, Z. (2013) Tuberculosis-related miRNAs have potential as disease biomarkers. Journal of Tuberculosis Research, 1, 17-27. doi: 10.4236/jtr.2013.12005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Kaufmann, S.H. and McMichael, A.J. (2005) Annulling a dangerous liaison: Vaccination strategies against AIDS and tuberculosis. Nature Medicine, 11, S33-S44. doi:10.1038/nm1221
[2] Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical Pharmacology, 69, 89-95.
[3] Braunwald, E. (2008) Biomarkers in heart failure. The New England Journal of Medicine, 358, 2148-2159. doi:10.1056/NEJMra0800239
[4] Parida, S.K. and Kaufmann, S.H. (2010) The quest for biomarkers in tuberculosis. Drug Discovery Today, 15, 148-157. doi:10.1016/j.drudis.2009.10.005
[5] Ambros, V. (2004) The functions of animal microRNAs. Nature, 431, 350-355. doi:10.1038/nature02871
[6] Liu, A., Tetzlaff, M.T., Vanbelle, P., Elder, D., Feldman, M., Tobias, J.W., Sepulveda, A.R. and Xu, X. (2009) MicroRNA expression profiling outperforms mRNA expression profiling in formalin-fixed paraffin-embedded tissues. International Journal of Clinical and Experimental Pathology, 2, 519-527.
[7] Weiler, J., Hunziker, J. and Hall, J. (2006) Anti-miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease? Gene Therapy, 13, 496-502. doi:10.1038/
[8] Calin, G.A. and Croce, C.M. (2006) MicroRNA signatures in human cancers. Nature Reviews Cancer, 6, 857-866. doi:10.1038/nrc1997
[9] Alvarez-Garcia, I. and Miska, E.A. (2005) MicroRNA functions in animal development and human disease. Development, 132, 4653-4662. doi:10.1242/dev.02073
[10] Jackson, A. and Linsley, P.S. (2010) The therapeutic potential of microRNA modulation. Discovery Medicine, 9, 311-318.
[11] Ferracin, M., Veronese, A. and Negrini, M. (2010) Micro-markers: miRNAs in cancer diagnosis and prognosis. Expert Review of Molecular Diagnostics, 10, 297-308. doi:10.1586/erm.10.11
[12] Lecellier, C.H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., Saïb, A. and Voinnet, O. (2005) A cellular microRNA mediates antiviral defense in human cells. Science, 308, 557-560. doi:10.1126/science.1108784
[13] Gottwein, E., Mukherjee, N., Sachse, C., Frenzel, C., Majoros, W.H., Chi, J.T., Braich, R., Manoharan, M., Soutschek, J., Ohler, U. and Cullen, B.R. (2007) A viral microRNA functions as an orthologue of cellular miR-155. Nature, 450, 1096-1099. doi:10.1038/nature05992
[14] Sah, S., McCall, M.N., Eveleigh, D., Wilson, M. and Irizarry, R.A. (2010) Performance evaluation of commercial miRNA expression array platforms. BMC Research Notes, 18, 80. doi:10.1186/1756-0500-3-80
[15] Mack, G.S. (2007) MicroRNA gets down to business. Nature Biotechnology, 25, 631-638. doi:10.1038/nbt0607-631
[16] Wang, C., Yang, S., Sun, G., Tang, X., Lu, S., Neyrolles, O. and Gao, Q. (2011) Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PLoS One, 6, e25832. doi:10.1371/journal.pone.0025832
[17] Wu, J., Lu, C., Diao, N., Zhang, S., Wang, S., Wang, F., Gao, Y., Chen, J., Shao, L., Lu, J., Zhang, X., Weng, X., Wang, H., Zhang, W. and Huang, Y. (2012) Analysis of microRNA expression profiling identifies miR-155 and miR-155* as potential diagnostic markers for active tuberculosis: A preliminary study. Human Immunology, 73, 31-37. doi:10.1016/j.humimm.2011.10.003
[18] Fu, Y., Yi, Z., Wu, X., Li, J. and Xu, F. (2011) Circulating microRNAs in patients with active pulmonary tuberculosis. Journal of Clinical Microbiology, 49, 4246-4251. doi:10.1128/JCM.05459-11
[19] Sharbati, J., Lewin, A., Kutz-Lohroff, B., Kamal, E., Einspanier, R. and Sharbati, S. (2011) Integrated microRNA-mRNA-analysis of human mon-ocyte derived macrophages upon Mycobacterium avium subsp. hominissuis infection. PLoS One, 6, e20258. doi:10.1371/journal.pone.0020258
[20] Jacobsen, M., Repsilber, D., Gutschmidt, A., Neher, A., Feldmann, K., Mollenkopf, H.J., Ziegler, A. and Kaufmann, S.H. (2007) Candidate bomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. Journal of Molecular Medicine, 85, 613-621. doi:10.1007/s00109-007-0157-6
[21] Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K. and Kosik, K.S. (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA, 9, 1274-1281. doi:10.1261/rna.5980303
[22] Agilent technologies: Agilent feature extraction reference guide. 2007.
[23] López-Romero, P., González, M.A., Callejas, S., Dopazo, A. and Irizarry, R.A. (2010) Processing of agilent microRNA array data. BMC Research Notes, 3, 18. doi:10.1186/1756-0500-3-18
[24] Sun, Z., Zhang, J., Song, H., Zhang, X., Li, Y., Tian, M., Liu, Y., Zhao, Y. and Li, C. (2010) Concomitant increases in spectrum and level of drug resistance in Mycobacterium tuberculosis isolates. The International Journal of Tuberculosis and Lung Disease, 14, 1436-1441.
[25] Cawood, R., Chen, H.H., Carroll, F., Bazan-Peregrino, M., van Rooijen, N. and Seymour, L.W. (2009) Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells. PLoS Pathogens, 5, e1000440. doi:10.1371/journal.ppat.1000440
[26] Babak, T., Zhang, W., Morris, Q., Blencowe, B.J. and Hughes, T.R. (2004) Probing microRNAs with microarrays: tissue specificity and functional inference. RNA, 10, 1813-1819. doi:10.1261/rna.7119904
[27] Sun, Y., Koo, S., White, N., Peralta, E., Esau, C., Dean, N.M. and Perera, R.J. (2004) Development of a microarray to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Research, 32e188.
[28] Liu, C.G., Calin, G.A., Meloon, B., Gamliel, N., Sevignani, C., Ferracin, .M., Dumitru, C.D., Shimizu, M., Zupo, S., Dono, M., Alder, H., Bullrich, F., Negrini, M. and Croce, C.M. (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proceedings of the National Academy of Sciences, 101, 9740-9744.
[29] Allawi, H.T., Dahlberg, J.E., Olson, S., Lund, E., Olson, M., Ma, W.P., Takova, T., Neri, B.P. and Lyamichev, V.I. (2004) Quantitation of microRNAs using a modified Invader assay. RNA, 10, 1153-1161. doi:10.1261/rna.5250604
[30] Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., Harano, T., Yatabe, Y., Nagino, M., Nimura, Y., Mitsudomi, T. and Takahashi, T. (2004) Re- duced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 64, 3753-3756. doi:10.1158/0008-5472.CAN-04-0637
[31] Schmittgen, T.D., Jiang, J., Liu, Q. and Yang, L. (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Research, 32E43.
[32] Sethupathy, P., Megraw, M. and Hatzigeorgiou, A.G. (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nature Methods, 3, 881-886. doi:10.1038/nmeth954
[33] Mazière, P. and Enright, A.J. (2007) Prediction of the miRNA targets. Drug Discovery Today, 12, 452-458. doi:10.1016/j.drudis.2007.04.002

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.