Chromium-Doped ZnO Nanoparticles Synthesized by Co-Precipitation: Chromium Effects


The influence of chromium doping on the physical properties of ZnO nanoparticles synthesized using a low temperature co-precipitation technique is presented. In particular, we have studied the correlation between the structural and the magnetic properties as a function of chromium concentrations. In order to investigate the magnetic properties, vibrating sample magnetometry and electron spin resonance were employed. X-ray diffraction, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and UV-Vis spectroscopy were used. X-ray diffraction patterns of all the samples showed peaks consistent with a hexagonal wurzite structure. The structure and composition analyses revealed that chromium is incorporated into the lattice structure, forming a solid solution instead of precipitates. All of the samples in this study exhibit ferromagnetic behavior. The implications of the effects of chromium are also discussed.


Share and Cite:

S. Sartiman, N. Djaja and R. Saleh, "Chromium-Doped ZnO Nanoparticles Synthesized by Co-Precipitation: Chromium Effects," Materials Sciences and Applications, Vol. 4 No. 9, 2013, pp. 528-537. doi: 10.4236/msa.2013.49065.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. A. Prinz, “Magnetoelectronics,” Science, Vol. 282, No. 5394, 1998, pp. 1660-1663. doi:10.1126/science.282.5394.1660
[2] A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, “Spintronics: A Spin-Based Electronics Vision for the Future,” Science, Vol. 294, No. 5546, 2001, pp. 1488-1495. doi:10.1126/science.1065389
[3] S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim and L. A. Boatner, “Wide Band Gap Ferromagnetic Semiconductors and Oxides,” Journal of Applied Physics, Vol. 93, No. 1, 2003, 13 p. doi:10.1063/1.1517164
[4] K. Ueda, H. Tabata and T. Kawai, “Magnetic and Electric Properties of Transition-Metal-Doped ZnO Films,” Applied Physics Letters, Vol. 79, No. 7, 2001, pp. 988-990. doi:10.1063/1.1384478
[5] H. Ohno, “Making Nonmagnetic Semiconductors Ferromagnetic,” Science, Vol. 281, No. 5379, 1998, pp. 951956. doi:10.1126/science.281.5379.951
[6] H. Ohno, H. Munekata, T. Penney, S. Von Molnár and L. L. Chang, “Magnetotransport Properties of p-Type (In, Mn)As Diluted Magnetic III-V Semiconductors,” Physical Review Letters, Vol. 68, No. 17, 1992, pp. 2664-2667. doi:10.1103/PhysRevLett.68.2664
[7] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto and Y. Iye, “(Ga,Mn)As: A New Diluted Magnetic Semiconductor Based on GaAs,” Applied Physics Letters, Vol. 69, No. 3, 1996, pp. 363-365. doi:10.1063/1.118061
[8] F. Matsukura, H. Ohno, A. Shen and Y. Sugawara, “Transport Properties and Origin of Ferromagnetism in (Ga,Mn) As,” Physical Review B, Vol. 57, No. 4, 1998, pp. R2037-R2040. doi:10.1103/PhysRevB.57.R2037
[9] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara and H. Koinuma, “Room-Temperature Ferromagnetic in Transparent Transition Metal-Doped Titanium Dioxide,” Science, Vol. 291, No. 5505, 2001, pp. 854-856. doi:10.1126/science.1056186
[10] T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida and T. Ito, “Magnetic and Magneto-Transport Properties of ZnO:Ni Films,” Physica E: Low-Dimensional Systems and Nanostructures, Vol. 10, No. 1-3, 2001, pp. 260-264. doi:10.1016/S1386-9477(01)00095-9
[11] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio, B. Johansson and G. A. Gehring, “Ferromagnetism above Room Temperature in Bulk and Transparent Thin Films of Mn-Doped ZnO,” Nature Matter, Vol. 2 , No. 10, 2003, pp. 673-677. doi:10.1038/nmat984
[12] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, “Zener Model Description of Ferromagnetism in ZincBlende Magnetic Semiconductors,” Science, Vol. 287, No. 5455, 2000, pp. 1019-1022. doi:10.1126/science.287.5455.1019
[13] R. Saleh, S. P. Prakoso and A. Fishli, “The Influence of Fe Doping on the Structural, Magnetic and Optical Properties of Nanocrystalline Zno Particles,” Journal of Magnetism and Magnetic Materials, Vol. 324, No. 5, 2012, pp. 665-670. doi:10.1016/j.jmmm.2011.07.059
[14] G. Glaspell, P. Dutta and A. A Manivanna, “A RoomTemperature and Microwave Synthesis of M-Doped ZnO (M = Co, Cr, Fe, Mn & Ni),” Journal of Cluster Science, Vol. 16, No. 4, 2005, pp. 523-536. doi:10.1007/s10876-005-0024-y
[15] O. D. Jayakumar, H. G. Salunke, R.M. Kadam, M. Mohapatra, G. Yaswant and S. K. Kulshreshtha, “Magnetism in Mn-doped ZnO Nanoparticles Prepared by A Co-Precipitation Method,” Nanotechnology, Vol. 17, No. 5, 2006, p. 1278. doi:10.1088/0957-4484/17/5/020
[16] R. Elilaressi and G. Chandrasekaran, “Structural, Optical, and Magnetic Properties of Nanoparticles of ZnO:Ni— DMS Prepared by Sol-Gel Method,” Materials Chemistry Physics, Vol. 123, No. 2-3, 2010, pp. 450-455. doi:10.1016/j.matchemphys.2010.04.039
[17] D. B. Buchholz, R. P. H. Chang, J.-Y. Song and J. B. Ketterson, “Room-Temperature Ferromagnetism in CuDoped ZnO Thin Films,” Applied Physics Letters, Vol. 87, No. 8, 2005, Article ID: 082504. doi:10.1063/1.2032588
[18] L.-H. Ye, A. J. Freeman and B. Delley, “Half-Metallic Ferromagnetism in Cu-Doped ZnO: Density Functional Calculations,” Physical Review B, Vol. 73, No. 3, 2006, Article ID: 033203. doi:10.110x3/PhysRevB.73.033203
[19] K. P. Bhatti, S. Chaudhary, D. K. Pandya and S. C. Kashyap, “Intrinsic and Extrinsic Origin of Room Temperature Ferromagnetism in ZnO:Co (5 at.%),” Journal of Applied Physics, Vol. 101, No. 10, 2007, Article ID: 103919. doi:10.1063/1.2740343
[20] J. Zhang, R. Skomski and D. J. Sellmyer, “Sample Preparation and Annealing Effects on the Ferromagnetism in Mn-Doped ZnO,” Journal of Applied Physics, Vol. 97, No. 10, 2005, Article ID: 10D303.
[21] D. P. Norton, M. E. Overberg, S. J. Pearton, K. Pruessner, J. D. Budai, L. A. Boatner, M. F. Chisholm, J. S. Lee, Z. G. Khim, Y. D. Park and R. G. Wilson, “Ferromagnetism in Cobalt-Implanted ZnO,” Applied Physics Letters, Vol. 83, No. 26, 2003, p. 5488. doi:10.1063/1.1637719
[22] K. Sato and H. Katayama-Yoshida, “Ferromagnetism in a Transition Metal Atom Doped ZnO,” Physica E: LowDimensional Systems and Nanostructures, Vol. 10, No.1, 2001, pp. 251-255. doi:10.1016/S1386-9477(01)00093-5
[23] J. M. Coey, M. Venkatesan and C. B. Fitzgerald, “Donor Impurity Band Exchange in Dilute Ferromagnetic Oxides,” Nature Matter, Vol. 4, No. 2, 2005, pp. 173-179. doi:10.1038/nmat1310
[24] L. Lutterotti, “MAUD (Material Analysis Using Diffraction) version 2.33,” 2010.
[25] G. K. Williamson and W. H. Hall, “X-Ray Line Broadening from Filled Aluminium and Wolfram,” Acta Metallurgica, Vol. 1, No. 1, 1953, pp. 22-31. doi:10.1016/0001-6160(53)90006-6
[26] J. F. Nye, “Physical Properties of Crystals: Their Representation by Tensors and Matrices,” Oxford University Press, Oxford, New York, 1985.
[27] B. Hapke, “Theory of Reflectance and Emittance Spectroscopy,” University Press, Cambridge, 1993.
[28] P. Koidl, “Optical Absorption of Co2+ in ZnO,” Physical Review B, Vol. 15, No. 5, 1977, pp. 2493-2499. doi:10.1103/PhysRevB.15.2493
[29] J. Anghel, A. Thurber, D. A. Tenne, C. B. Hanna and A. Punnoose, “Correlation Between Saturation Magnetization, Bandgap, and Lattice Volume of Transition Metal (M = Cr, Mn, Fe, Co, or Ni) doped Zn1-XMXO Nanoparticles,” Journal of Applied Physics, Vol. 107, No. 9, 2010, Article ID: 09E314. doi:10.1063/1.3360189
[30] Z. H. Wang, D. Y. Geng and Z. D. Zhang, “Room-Temperature Ferromagnetism and Optical Properties of Zn1XMnXO Nanoparticles,” Solid State Communication, Vol. 149, No. 17-18, 2009, pp. 682-684. doi:10.1016/j.ssc.2009.02.016
[31] M. Bouloudenine, N. Viart, S. Colis and A. Dinia, “Bulk Zn1-XCoXO MAGNETIC Semiconductors Prepared by Hydrothermal Technique,” Chemical Physics Letters, Vol. 397, No. 1-3, 2004, pp. 73-76. doi:10.1016/j.cplett.2004.08.064
[32] K. J. Kim and Y. R. Park, “Spectroscopic Ellipsometry Study of Optical Transitions in Zn1-XCoXO Alloys,” Applied Physics Letters, Vol. 81, No. 8, 2002, p. 1420. doi:10.1063/1.1501765
[33] A. J. Hays, A. Punnoose, R. Baldner, M. H. Engelhard, J. Peloquin, K. M. Reddy, “Relationship between the Structural and Magnetic Properties of Co-Doped SnO2 Nano-particles,” Physical Review B, Vol. 72, No. 7, 2005, Article ID: 075203. doi:10.1103/PhysRevB.72.075203
[34] Z. W. Zhao, B. K. Tay, J. S. Chen, J. F. Hu, B. C. Lim and G. P. Li, “Large Magnetic Moment Observed in Co-Doped ZnO Nanoclusters-Assembled Thin Films at Room Temperature,” Applied Physics Letters, Vol. 90, No. 15, 2007, Article ID: 152502. doi:10.1063/1.2721140
[35] A. Parra-Palomino, O. Perales-Perez, R. Singhal, M. Tomar, J. Hwang, P. M. Voyles, “Structural, Optical, and Magnetic Characterization of Monodisperse Fe-Doped ZnO Nanocrystals,” Journal of Applied Physics, Vol. 103, No. 7, 2008, Article ID: 07D121. doi:10.1063/1.2834705
[36] Z. H. Wang, D. Y. Geng, and Z. D. Zhang, “Room-Temperature Ferromagnetism and Optical Properties of Zn1-X MnXO Nanoparticles,” Solid State Communications, Vol. 149, No. 17-18, 2009, pp. 682-684. doi:10.1016/j.ssc.2009.02.016
[37] X. Lu, S. Tsoi, I. Miotkowski, S. Rodriguez, H. Alawadhi and A. K. Ramdas, “Raman Electron Paramagnetic Resonance in Zn1-xCrxTe and Cd1-xCrxTe,” Physical Review B, Vol. 75, No. 15, 2007, Article ID: 155206. doi:10.1103/PhysRevB.75.155206
[38] J. T. Vallin and G. D. Watkins, “The Spin Hamiltonian for Cr2+ in CdS,” Physics Letters A, Vol. 37, No. 4, 1971, pp. 297-298. doi:10.1016/0375-9601(71)90678-5
[39] T. L. Estle and W. C. Holton, “Electron-ParamagneticResonance Investigation of the Superhyperfine Structure of Iron-Group Impurities in II-VI Compounds,” Physical Review, Vol. 150, No. 1, 1966, pp. 159-167. doi:10.1103/PhysRev.150.159
[40] J. T. Vallin and G. D. Watkins, “EPR of Cr2+ in II-VI Lattices,” Physical Review B, Vol. 9, No. 5, 1974, pp. 2051-2072. doi:10.1103/PhysRevB.9.2051
[41] M. E. J. Boonman, W. Mac, A. Twardowski, A. Wittlin, P. J. M. van Bentum, J. C. Maan and M. Demianiuk, “High-Magnetic-Field EPR of Cr-Based Diluted Magnetic Semiconductors,” Physical Review B, Vol. 61, No. 8, 2000, pp. 5358-5368. doi:10.1103/PhysRevB.61.5358
[42] J. J. Kerbs and G. H. Strauss, “EPR of Cr(3d3) in GaAs—Evidence for Strong Jahn-Teller Effects,” Physical Review B, Vol. 15, No. 1, 1977, pp. 17-22. doi:10.1103/PhysRevB.15.17
[43] G. Krishnaiah, N. MadhusudhanaRao, D. R. Reddy, B. K. Reddy and P. S. Reddy, “Growth and Structural Properties of Zn1-xCrxTe Crystals,” Journal of Crystal Growth, Vol. 310, No. 1, 2008, pp. 26-30. doi:10.1016/j.jcrysgro.2007.10.013
[44] A. Franco Jr. and R. C. Santana, “Electron Paramagnetic Resonance (EPR) of Antiferromagnetic Nanoparticles of La1-xSrxCrO3 (0.000 ≤ x ≤ 0.020) Synthesized by Combustion Reaction,” Materials Chemistry and Physics, Vol. 120, No. 1, 2010, pp. 225-228. doi:10.1016/j.matchemphys.2009.10.052
[45] G. Krishnaiah, N. MadhusudhanaRao, B. K. Reddy, D. R. Reddy, T. M. Babu, S. Sambasivam and P. S. Reddy, “EPR and Magnetic Properties of Vapour Phase Grown Zn1-xCrxTe Crystals,” Physics Letters A, Vol. 372, No. 42, 2008, pp. 6429-6433. doi:10.1016/j.physleta.2008.08.039
[46] H. Liu, X. Zhang, L. Li, Y. X. Wang, K. H. Gao, Z. Q. Li, R. K. Zheng, S. P. Ringer, B. Zhang and X. X. Zhang, “Role of Point Defects in Room-Temperature Ferromagnetism of Cr-Doped ZnO,” Applied Physics Letters, Vol. 91, No. 7, 2007, Article ID: 072511. doi:10.1063/1.2772176
[47] X. H. Chen, H. T. Zhang, C. H. Wang, X. G. Luo and P. H. Li, “Effect of Particle Size on Magnetic Properties of Zinc Chromite Synthesized by Sol-Gel Method,” Applied Physics Letters, Vol. 81, No. 23, 2002, p. 4419. doi:10.1063/1.1526921
[48] B. K. Roberts, A. B. Pakhomov and K. M. Krishnan, “Effect of Hydrogen Codoping on Magnetic Ordering and Conductivity in Cr:ZnO Thin Films,” Journal of Applied Physics, Vol. 103, No. 7, 2008, Article ID: 07D133.
[49] R. Bhargava, P. K Sharma, A. K Chawla, S. Kumar, R. Chandra, A. C Pandey and N. Kumar, “Variation in Structural, Optical and Magnetic Properties of Zn1-XCrXO (x= 0.0, 0.10, 0.15, and 0.20) Nanoparticles: Role of Dopant Concentration on Non-Saturation of Magnetization,” Materials Chemistry and Physics, Vol. 125, No. 3, 2011, pp. 664-671. doi:10.1016/j.matchemphys.2010.09.075
[50] C. Xu, K. Yang, Y. Liu, L. Huang, H. Lee, J. Cho and H. Wang, “Buckling and Ferromagnetism of Aligned CrDoped ZnO Nanorods,” The Journal of Physical Chemistry C, Vol. 112, No. 49, 2008, pp. 19236-19241. doi:10.1021/jp806164b
[51] C. Song, K. W. Geng, F. Zeng, X. B. Wang, Y. X. Shen, F. Pan, Y. N. Xie, T. Liu, H. T. Zhou and Z. Fan, “Giant Magnetic Moment in an Anomalous Ferromagnetic Insulator: Co-Doped ZnO,” Physical Review B, Vol. 73, No. 2, 2006, Article ID: 024405. doi:10.1103/PhysRevB.73.024405
[52] J. L. MacManus-Driscoll, N. Khare, Y. Liu and M. E. Vickers, “Structural Evidence for Zn Intersititials in Ferromagnetic Zn1–xCoxO Films,” Advanced Materials, Vol. 19, No. 19, 2007, pp. 2925-2929.
[53] H. S. Hsu, J. C. A. Huang, S. F. Chen and C. P. Liu, “Role of Grain Boundary and Grain Defects on Ferromagnetism in Co:ZnO Films,” Applied Physical Letters, Vol. 90, No. 10, 2007, Article ID: 102506. doi:10.1063/1.2711763
[54] J. M. D. Coey, “Dilute Magnetic Oxide,” Current Opinion in Solid State and Materials Science, Vol. 10, No. 2, 2006, pp. 83-92. doi:10.1016/j.cossms.2006.12.002.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.