Share This Article:

Hybrid Predictive Control Based on High-Order Differential State Observers and Lyapunov Functions for Switched Nonlinear Systems

Abstract Full-Text HTML Download Download as PDF (Size:355KB) PP. 32-42
DOI: 10.4236/am.2013.49A006    2,716 Downloads   4,523 Views   Citations

ABSTRACT

In this paper, a hybrid predictive controller is proposed for a class of uncertain switched nonlinear systems based on high-order differential state observers and Lyapunov functions. The main idea is to design an output feedback bounded controller and a predictive controller for each subsystem using high-order differential state observers and Lyapunov functions, to derive a suitable switched law to stabilize the closed-loop subsystem, and to provide an explicitly characterized set of initial conditions. For the whole switched system, based on the high-order differentiator, a suitable switched law is designed to ensure the whole closed-loop’s stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

B. Su, G. Qi and B. Wyk, "Hybrid Predictive Control Based on High-Order Differential State Observers and Lyapunov Functions for Switched Nonlinear Systems," Applied Mathematics, Vol. 4 No. 9A, 2013, pp. 32-42. doi: 10.4236/am.2013.49A006.

References

[1] J. Hespanha and A. S. Morse, “Switching between Stabi lizing Controllers,” Automatica, Vol. 38, No. 11, 2002, pp. 1905-1917. doi:10.1016/S0005-1098(02)00139-5
[2] S. L. D. Kothare and M. Morari, “Contractive Model Pre dictive Control for Constrained Nonlinear Systems,” IEEE Transactions on Automatic Control, Vol. 45, No. 6, 2000, pp. 1053-1071.
doi:10.1109/9.863592
[3] D. Q. Mayne, J. B. Rawlings and P. O. M. Rao, “Con strained Model Predictive Control: Stability and Optimal ity,” Automatica, Vol. 36, No. 6, 2000, pp. 789-814. doi:10.1016/S0005-1098(99)00214-9
[4] M. S. Branicky, “Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems,” IEEE Transactions on Automatic Control, Vol. 43, No. 4, 1998, pp. 475-482.
doi:10.1109/9.664150
[5] P. Mhaskar, N. H. El-Farra and P. D. Christofides, “Ro bust Hybrid Predictive Control of Nonlinear Systems,” Automatica, Vol. 41, No. 2, 2005, pp. 209-217. doi:10.1016/j.automatica.2004.08.020
[6] P. Mhaskar, N. H. El-Farra and P. D. Christofides, “Stabi lization of Nonlinear Systems with State and Control Con straints Using Lyapunov-Based Predictive Control,” Sys tems and Control Letters, Vol. 55, No. 8, 2006, pp. 650-659. doi:10.1016/j.sysconle.2005.09.014
[7] P. Mhaskar, N. H. El-Farra and P. D. Christofides, “Pre dictive Control of Switched Nonlinear Systems with Sche duled Mode Transitions,” IEEE Transactions on Automa tic Control, Vol. 50, No. 11, 2005, pp. 1670-1680. doi:10.1109/TAC.2005.858692
[8] S. Baili and L. Shaoyuan, “Constrained Predictive Con trol for Nonlinear Switched Systems with Uncertainty,” Acta Automatica Sinica, Vol. 34, No. 9, 2008, pp. 1141-1147
[9] N. H. E1-Farra and P. D. Christofides, “Bounded Robust Control of Constrained Multivariable Nonlinear Proc esses,” Chemical Engineering Science, Vol. 58, No. 13, 2003, pp. 3025-3047. doi:10.1016/S0009-2509(03)00126-X
[10] N. H. E1-Farra, P. Mhaskar and P. D. Christofides, “Out put Feedback Control of Switched Nonlinear Systems Us ing Multiple Lyapunov Functions,” Systems & Control Letters, Vol. 54, No. 12, 2005, pp. 1163-1182. doi:10.1016/j.sysconle.2005.04.005
[11] B. L. Su, S. Y. Li and Q. M. Zhu, “The Design of Predic tive Control with Characterized Set of Initial Condition for Constrained Switched Nonlinear System,” Science in China Series E-Technological Sciences, Vol. 52, No. 2, 2009, pp. 456-466. doi:10.1007/s11431-008-0249-8
[12] G. Y. Qi, Z. Chen and Z. Yuan, “Adaptive High Order Dif ferential Feedback Control for Affine Nonlinear System,” Chaos, Solitons & Fractals, Vol. 37, 2008, pp. 308-315. doi:10.1016/j.chaos.2006.09.027
[13] G. Y. Qi, Z. Chen and Z. Yuan, “Model Free Control of Affine Chaotic System,” Physics Letters A, Vol. 344, No. 2-4, 2005, pp 189-202. doi:10.1016/j.physleta.2005.06.073
[14] G. Y. Qi, M. A. van Wyk and B. J. van Wyk, “Model-Free Differential States Observer for Nonlinear Affine Sys tem,” The 7th IFAC Symposium on Nonlinear Control Systems, 21-24 August 2007, Pretoria, pp. 984-989

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.