Evaluation of Energy Band Gap, Thermal Conductivity, Phase Transition Temperature and Elastic Response of PS/CdS Semiconducting Optical Nanocomposite

DOI: 10.4236/wjnse.2013.33013   PDF   HTML   XML   6,252 Downloads   8,905 Views   Citations


Thick film of Polystyrene (PS)/CdS semiconducting optical nanocomposite has been synthesized by dispersing nanofiller particles of CdS in PS matrix. The nanostructure of the CdS particles has been ascertained through X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Small angle x-ray scattering analysis has been performed in order to ascertain nanocomposite character of the PS/CdS sample. Scanning Electron Microscopy (SEM) analyses of these samples have been carried out to establish the surface morphology. Optical Absorption Spectroscopy is used to measure the energy band gap of PS/CdS nanocomposite by using Tauc relation whereas Transient Plane Source Technique is used for the determination of thermal conductivity of the prepared samples. The phase transition temperature and elastic response of the prepared samples have been ascertained through Dynamic Mechanical Analyzer (DMA). This study reveals that the thermal conductivity, Young’s modulus and the toughness of the material are greatly influenced by the existence of interfacial energetic interaction between dispersed CdS nanofiller particles and matrix of PS.

Share and Cite:

V. Mathur, K. Rathore and K. Sharma, "Evaluation of Energy Band Gap, Thermal Conductivity, Phase Transition Temperature and Elastic Response of PS/CdS Semiconducting Optical Nanocomposite," World Journal of Nano Science and Engineering, Vol. 3 No. 3, 2013, pp. 93-99. doi: 10.4236/wjnse.2013.33013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. Barber, C. R. Pollock, L. L. Beecroft and C. K. Ober, “Amplification by Optical Composites,” Optics Letters, Vol. 22, No. 16, 1997, p. 1247. doi:10.1364/OL.22.001247
[2] M. Z. Rong, M. Q. Zhang, H. C. Liang and H. M. Zeng, “Surface Modification and Particles Size Distribution Control in Nano-CdS/Polystyrene Composite Film”, Chemical Physics, Vol. 286, No. 2-3, 2003, pp. 267-276. doi:10.1016/S0301-0104(02)00928-X
[3] M. Pentimalli, F. Antolini, E. M. Bauer, D. Capitani, T. Di Luccio and S. Viel, “A Solid State Nuclear Magnetic Resonance Study on the Thermolytic Synthesis of CdS Nanoparticles in a Polystyrene Matrix,” Materials Letters, Vol. 60, No. 21-22, 2006, pp. 2657-2661. doi:10.1016/j.matlet.2006.01.060
[4] L. Chen, J. Zhu, Q. Li, S. Chen and Y. Wang, “Controllable Synthesis of Functionalized CdS Nanocrystals and CdS/PMMA Nanocomposite Hybrids Original Research Article,” European Polymer Journal, Vol. 43, No. 11, 2007, pp. 4593-4601. doi:10.1016/j.eurpolymj.2007.08.008
[5] Wikipedia. http://en.wikipedia.org/wiki/Polystyrene
[6] V. Mathur, M. Dixit, K. S. Rathore, N. S. Saxena and K. B. Sharma, “Tensile Study of PVC-CdS Semiconducting Nanocomposite,” Rapid Communication Optoelectronics and Advanced Materials, Vol. 7, 2009, pp. 685-687.
[7] K. S. Rathore, D. Patidar, Y. Janu, N. S. Saxena, K. B. Sharma and T. P. Sharma, “Structural and Optical Characterization of Chemically Synthesized ZnS Nanoparticles,” Chalcogenide Letters, Vol. 5, No. 6, 2008, pp. 105-110.
[8] V. Favier, G. R. Canova, S. C. Shrivastava and J. Y. Cavaille, “Mechanical Percolation in Cellulose Whisker Nanocomposites,” Polymer Engineering & Science, Vol. 37, No. 10, 1997, pp. 1732-1739. doi:10.1002/pen.11821
[9] L. Chazeau, J. Y. Cavaille, G. Canova, R. Dendievel and B. Boutherin, “Viscoelastic Properties of Plasticized PVC Reinforced with Cellulose Whiskers,” Journal of Applied Polymer Science, Vol. 71, No. 11, 1999, p. 1797. doi:10.1002/(SICI)1097-4628(19990314)71:11<1797::AID-APP9>3.0.CO;2-E
[10] K. S. Rathore, D. Patidar, D. Choudhary, N. S. Saxena and K. Sharma “Cadmium Sulphide Nanocrystallites: Synthesis, Optical and Electrical Studies,” American Institute of Physics Proceedings, Vol. 1004, 2010, pp. 145-149.
[11] V. Mathur, M. Dixit, N. S. Saxena and K. B. Sharma, “Morphological Effects on Mechanical Properties of Polystyrene-Polyvinylchloride Blends,” Phase Transitions, Vol. 82, No. 11, 2009, pp. 769-772. doi:10.1080/01411590903445089
[12] K. Menard, “Dynamic Mechanical Analysis: A Practical Introduction,” LLC, CRC Press, 1999, pp. 61-64.
[13] D. Patidar and N. S. Saxena, “Influence of CdS Nano Additives on the Thermal Conductivity of Poly(vinyl chloride)/CdS Nanocomposites,” Advances in Nanoparticles, Vol. 2, 2013, pp. 11-15. doi:10.4236/anp.2013.21003
[14] T. K. Jayasree, P. Predeep, R. Agarwal and N. S. Saxena, “Thermal Conductivity and Thermal Diffusivity of Thermoplastic Elastomeric Blends of Styrene Butadiene Rubber/High Density Polyethylene: Effect of Blend Ratio and Dynamic Crosslinking,” Trends in Applied Sciences Research, Vol. 13, 2006, pp. 278-291.
[15] V. Mathur, M. Dixit, N. S. Saxena and K. Sharma, “Phase Transition and Mechanical Properties of PS/PVC/CdS Polymeric Nanocomposites,” American Institute of Physics Proceedings, Vol. 1249, 2010, pp. 141-144.
[16] V. Mathur, M. Dixit, K. S. Rathore, N. S. Saxena and K. B. Sharma, “Morphological and Mechanical Characterization of a PMMA/CdS Nanocomposite,” Frontier of Chemical Engineering, Vol. 5, No. 2, 2011, pp. 258-263. doi:10.1007/s11705-010-1014-7

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.