Size Variation of Gold Nanoparticles Synthesized Using Tannic Acid in Response to Higher Chloroauric Acid Concentrations


The size evolution of gold nanoparticles synthesized using tannic acid with initial gold chloride concentrations ranging from 0.2 - 2 mM at various tannic acid to chloroauric acid molar ratios (ranging from 2:1 to 12:1) has been analysed. Dynamic light scattering spectroscopic and tramission electron microscopic analyses were performed to assess the size of formed gold nanoparticles. Two different patterns of nanoparticle size evolution were obtained; the size evolution trend below 1 mM chloroauric acid concentration was found to be different from the one obtained at gold chloride concentrations higher than or equal to 1 mM. In case of sizes obtained for less than 1 mM gold chloride concentration, a general decrease in particle size was observed with increase in gold salt concentration. On the contrary, for the particles synthesised using chloroauric acid concentrations higher than or equal to 1 mM, with increase in gold salt concentration, a general increase in nanoparticle diameter was seen. For the molarities 0.2 and 0.5 mM, with increase in tannic acid/ chloroauric acid ratios, first the size decreases and then increases and finally reaches saturation. Particles formed at molarities greater than equal to 1 mM do not exhibit plateaux in their size rather initially decrease and then increase in response to increasing tannic acid/chloroauric acid ratios except for 2 mM concentration at which a small saturation is observed. The findings enumerate that higher gold chloride concentrations leave a significant impact on the sizes of gold nanaparticles obtained using tannic acid as a reducing agent of chloroauric acid solution.

Share and Cite:

T. Ahmad and W. Khan, "Size Variation of Gold Nanoparticles Synthesized Using Tannic Acid in Response to Higher Chloroauric Acid Concentrations," World Journal of Nano Science and Engineering, Vol. 3 No. 3, 2013, pp. 62-68. doi: 10.4236/wjnse.2013.33009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Krolikowska, A. Kudelski, A. Michota and J. Bukowska, “SERS Studies on the Structure of Thioglycolic Acid Monolayers on Silver and Gold,” Surface Science, Vol. 532-535, 2003, pp. 227-232. doi:10.1016/S0039-6028(03)00094-3
[2] G. Peto, G. L. Molnar, Z. Paszti, O. Geszti, A. Beck and L. Guczi, “Electronic Structure of Gold Nanoparticles Deposited on SiOx/Si(100),” Materials Science and En- gineering: C, Vol. 19, No. 1-2, 2002, pp. 95-99. doi:10.1016/S0928-4931(01)00449-0
[3] A. Kumar, S. Mandal, P. R. Selvakannan, R. Parischa, A. B. Mandale and M. Sastry, “Investigation into the Interaction between Surface-Bound Alkylamines and Gold Nanoparticles,” Langmuir, Vol. 19, No. 15, 2003, pp. 6277-6282. doi:10.1021/la034209c
[4] N. Chandrasekharan and P. V. Kamat, “Improving the Photoelectrochemical Performance of Nanostructured TiO2 Films by Adsorption of Gold Nanoparticles,” Journal of Physical Chemistry B, Vol. 104, No. 46, 2000, pp. 10851-10857. doi:10.1021/jp0010029
[5] Y. Hong, R. J. Honda, N. V. Myung and S. L. Walker, “Transport of Iron-Based Nanoparticles: Role of Magnetic Properties,” Environmental Science & Technology, Vol. 43, No. 23, 2009, pp. 8834-8839. doi:10.1021/es9015525
[6] B. D. Chithrani, A. A. Gnazani and W. C. W Chan, “Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells,” Nano Letters, Vol. 6, No. 4, 2006, pp. 662-668. doi:10.1021/nl052396o
[7] M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chemical Reviews, Vol. 104, No. 1, 2004, pp. 293-346. doi:10.1021/cr030698+
[8] A. Fathi-Azarbayjani, L. Qun, Y. W. Chan and S. Y. Chan, “Novel Vitamin and Gold-Loaded Nanofiber Facial Mask for Topical Delivery,” AAPS PharmSciTech, Vol. 11, No. 3, 2010, pp. 1164-1170. doi:10.1208/s12249-010-9475-z
[9] J. S. Lee, J. Cho, C. Lee, I. Kim, J. Park, Y. M. Kim, H. Shin, J. Lee and F. Caruso, “Layer-by-Layer Assembled Charge-Trap Memory Devices with Adjustable Electronic Properties,” Nature Nanotechnology, Vol. 2, 2007, 790-795. doi:10.1038/nnano.2007.380
[10] M.-C. Bowman, T. E. Ballard, C. J. Ackerson, D. L. Feldheim, D. M. Margolis and C. Melander, “Inhibition of HIV Fusion with Multivalent Gold Nanoparticles,” Journal of the American Chemical Society, Vol. 130, No. 22, 2008, pp. 6896-6897. doi:10.1021/ja710321g
[11] J. Bresee, K. E. Maier, A. E. Boncella, C. Melander and D. L. Feldheim, “Growth Inhibition of Staphylococcus aureus by Mixed Monolayer Gold Nanoparticles,” Small, Vol. 7, No. 14, 2011, pp. 2027-2031. doi:10.1002/smll.201100420
[12] J. F. Hainfeld, D. N. Slatkin, T. M. Focella and H. M. Smilowitz, “Gold Nanoparticles: A New X-Ray Contrast Agent,” British Journal of Radiology, Vol. 79, No. 939, 2006, pp. 248-253. doi:10.1259/bjr/13169882
[13] W. E. Ghann, O. Aras, T. Fleiter and M. C. Daniel, “Syntheses and Characterization of Lisinopril-Coated Gold Nanoparticles as Highly Stable Targeted CT Contrast Agents in Cardiovascular Diseases,” Langmuir, Vol. 28, No. 28, 2012, pp. 10398-10408. doi:10.1021/la301694q
[14] E. Boisselier and D. Astruc, “Gold Nanoparticles in Nanomedicine: Preparations, Imaging, Diagnostics, Therapies and Toxicity,” Chemical Society Reviews, Vol. 38, No. 6, 2009, pp. 1759-1782. doi:10.1039/b806051g
[15] J. Bresee , K. E. Maier, C. Melander and D. L. Feldheim, “Identification of Antibiotics Using Small Molecule Variable Ligand Display on Gold Nanoparticles,” Chemical Communications, Vol. 46, No. 40, 2010, pp. 7516-7518. doi:10.1039/c0cc02663h
[16] T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J. I. Yeh, M. R. Wiesner and A. E. Nel, “Comparison of the Abilities of Ambient and Manufactured Nanoparticles to Induce Cellular Toxicity According to an Oxidative Stress Paradigm,” Nano Letters, Vol. 6, No. 8, 2006, pp. 1794-1807.
[17] K. L. Dreher, “Health and Environmental Impact of Nanotechnology: Toxicological Assessment of Manufactured Nanoparticles,” Toxicological Sciences, Vol. 77, No. 1, 2004, pp. 3-5. doi:10.1093/toxsci/kfh041
[18] J. M. Bergen, H. A. von Recum, T. T. Goodman, A. P. Massey and S. Pun, “Gold Nanoparticles as a Versatile Platform for Optimizing Physicochemical Parameters for Targeted Drug Delivery,” Macromolecular Bioscience, Vol. 6, No. 7, 2006, pp. 506-516. doi:10.1002/mabi.200600075
[19] M. Gaumet, A. Vargas, R. Gurny and F. Delie, “Nanoparticles for Drug Delivery: The Need for Precision in Reporting Particle Size Parameters,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 69, No. 1, 2008, pp. 1-9. doi:10.1016/j.ejpb.2007.08.001
[20] X. Ji, X. Song, J. Li, Y. Bai, W. Yang and X. J. Peng, “Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate,” Journal of the American Chemical Society, Vol. 129, No. 45, 2007, pp. 13939- 13948. doi:10.1021/ja074447k
[21] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot and A. J. Plech, “Turkevich Method for Gold Nanoparticle Synthesis Revisited,” Journal of Physical Chemistry B, Vol. 110, No. 32, 2006, pp. 15700-15707. doi:10.1021/jp061667w
[22] K. Zabetakis, W. E. Ghann, S. Kumar and M. Daniel, “Effect of High Gold Salt Concentrations on the Size and Polydispersity of Gold Nanoparticles Prepared by an Extended Turkevich-Frens Method,” Gold Bulletin, Vol. 45, No. 4, 2012, pp. 203-211. doi:10.1007/s13404-012-0069-2
[23] W. Ostwald, “An Introduction to Theoretical and Applied Colloid Chemistry,” John Wiley and Sons, New York, 1917, p. 23.
[24] A. A. Volkert, V. Subramaniam and A. J. Haes, “Implications of Citrate Concentration during the Seeded Growth Synthesis of Gold Nanoparticles,” Chemical Communications, Vol. 47, No. 1, 2011, pp. 478-480. doi:10.1039/c0cc02075c
[25] W. Patungwasa and J. H. Hadak, “pH Tunable Morphology of the Gold Nanoparticles Produced by Citrate Reduction,” Materials Chemistry and Physics, Vol. 108, No. 1, 2008, pp. 45-54. doi:10.1016/j.matchemphys.2007.09.001
[26] S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” Journal of Physical Chemistry B, Vol. 103, No. 21, 1999, pp. 4212-4217. doi:10.1021/jp984796o
[27] S. K. Sivaraman, S. Kumar and V. Santhanam, “Room-Temperature Synthesis of Gold Nanoparticles-Size-Control by Slow Addition,” Gold Bulletin, Vol. 43, No. 4, 2010, pp. 275-286. doi:10.1007/BF03214997
[28] S. A. Aromal and D. Philip, “Facile One-Pot Synthesis of Gold Nanoparticles Using Tannic Acid and Its Application in Catalysis,” Physica E: Low Dimensional Systems and Nanostructures, Vol. 44, No. 7-8, 2012, pp. 1692-1696. doi:10.1016/j.physe.2012.04.022
[29] V. Germain, J. Li, D. Ingert, Z. Wang and M. P. Pileni, “Stacking Faults in Formation of Silver Nanodisks,” Journal of Physical Chemistry B, Vol. 107, No. 34, 2003, pp. 8717-8720. doi:10.1021/jp0303826

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.