Density Functional Study of the Cluster Model of SnO2(110) Surface Modified by Benzoic Acids


The properties of the modified surface of SnO2(110) with benzoic acid (Y-C6H4-COOH: Y is para position relative to -COOH group) derivatives were investigated using density functional theory. Zehner et al. mentioned that the modification of surface dipole moment made it possible to tune the work function of the system. The experiment of Ganzorig et al. showed that there was a linear relationship between the dipole moment of the binding molecule and the work function change of the system using the modified surface of indium-tin oxide (ITO) with some benzoic acid derivatives. To elucidate the relation between the dipole moment of the molecule and the work function change, we investigated the modified surface of SnO2(110) using Sn7O14 cluster model which was embedded in the fixed point charges. On the modification of the surface, benzoic acid derivatives were bound to SnO2 surface. By changing the terminal group of benzoic acid with H, Cl, F, CF3 and CCl3, the work function changed and the dipole moment of the binding molecules of the modified SnO2(110) were evaluated. The results showed that there was a linear relationship between the dipole moment of the binding molecules and the work function changed. From this relation, the average value of the dipole moments of Sn-OOC linkage at the surface was also evaluated.

Share and Cite:

T. Khishigjargal, N. Javkhlantugs, C. Ganzorig, Y. Kurihara, M. Sakomura and K. Ueda, "Density Functional Study of the Cluster Model of SnO2(110) Surface Modified by Benzoic Acids," World Journal of Nano Science and Engineering, Vol. 3 No. 3, 2013, pp. 52-56. doi: 10.4236/wjnse.2013.33007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Batzill, K. Katsiev and U. Diebold, “Tuning the Oxide/Organic Interface: Benzene on SnO2(101),” Applied Physics Letters, Vol. 85, No. 23, 2004, pp. 5766-5768. doi:10.1063/1.1831565
[2] C. Ganzorig and M. Fujihara, “Chemically Modified Oxide Electrodes. Encyclopedia of Electrochemistry,” Wiley-VCH Verlag GmbH & Co. KGaA, city, 2007. doi:10.1002/9783527610426.bard100107
[3] Ch. Ganzorig, K.-J. Kwak, K. Yagi and M. Fujihira, “Fine Tuning Work Function of Indium Tin Oxide by Surface Molecular Design: Enhanced Hole Injection in Organic Electroluminescent Devices,” Applied Physics Letters, Vol. 79, No. 2, 2001, pp. 272-274. doi:10.1063/1.1384896
[4] M. Batzil and U. Diebold, “The Surface and Materials Science of Tin Oxide,” Progress in Surface Science, Vol. 79, No. 2-4, 2005, pp. 47-154. doi:10.1016/j.progsurf.2005.09.002
[5] E. De Frésart, J. Darville and J. M. Gilles, “Influence of the Surface Reconstruction on the Work Function and Surface Conductance of (110)SnO2,” Application of Surface Science, Vol. 11-12, 1982, pp. 637-651. doi:10.1016/0378-5963(82)90109-X
[6] J. M. Themlin, R. Sporken, J. Darville, R. Caudano, J. M. Gilles and R. L. Johnson, “Resonant-Photoemission Study of SnO2: Cationic Origin of the Defect Band-Gap States,” Physical Review B, Vol. 42, No 18, 1990, pp. 11914-11925. doi:10.1103/PhysRevB.42.11914
[7] B. M. S. Giambastiani, “Evoluzione Idrologica ed Idrogeologica Della Pineta di San Vitale (Ravenna),” Ph.D. Thesis, Bologna University, Bologna, 2007.
[8] D. F. Cox, T. B. Fryberger and S. Semancik, “Oxygen Vacancies and Defect Electronic States on the SnO2(110)-1 × 1 Surface,” Physical Review B, Vol. 38, No 3, 1988, pp. 2072-2083. doi:10.1103/PhysRevB.38.2072
[9] M. Batzill, K. Katsiev, J. M. Burst and U. Diebold, “Gas-Phase-Dependent Properties of SnO2 (110), (100), and (101) Single-Crystal Surfaces: Structure, Composition, and Electrocnic Properties,” Physical Review B, Vol. 72, No. 16, 2005, pp. 165414-165434. doi:10.1103/PhysRevB.72.165414
[10] J. Oviedo and M. J. Gillan, “Energetics and Structure of Stoichiometric SnO2 Surfaces Studied by First-Principles Calculations,” Surface Science, Vol. 463, No. 2, 2000, pp. 93-101. doi:10.1016/S0039-6028(00)00612-9
[11] O. Wright and W. Wright, “Flying-Machine,” US Patent No. 821393, 1906.
[12] J. Oviedo and M. J. Gillan, “The Energetic and Structure of Oxygen Vacancies on the SnO2 (110) Surface,” Surface Science, Vol. 467, No. 1-3, 2000, pp. 35-48. doi:10.1016/S0039-6028(00)00776-7
[13] I. Manassids, J. Goniakowski, L. N. Kantorovich and M. J. Gillan, “The Structure of the Stoichiometric and Reduced SnO2(110),” Surface Science, Vol. 339, No. 3, 1995, pp. 258-271. doi:10.1016/0039-6028(95)00677-X
[14] A. Bouzoubaa, A. Markovits, M. O. Calatayud and C. Minot, “Comparison of the Reduction of Metal Oxide Surfaces: TiO2-Anatase, TiO2-Rutile and SnO2-Rutile,” Surface Science, Vol. 583, No 1, 2005, pp. 107-117. doi:10.1016/j.susc.2005.03.029
[15] M. A. Mäki-Jaskari and T. T. Rantala, “Theoretical Study of Oxygen-Deficient SnO2(110) Surfaces,” Physical Review B, Vol. 65, No. 24, 2002, pp. 245428-245435. doi:10.1103/PhysRevB.65.245428
[16] M. Viitala, O. Cramariuc, T. T. Rantala and V. Golovanov, “Small Hydrocarbon Adsorbates on SnO2(110) Surfaces: Density Functional Theory Study,” Surface Science, Vol. 602, No. 18, 2008, pp. 3038-3042. doi:10.1016/j.susc.2008.08.001
[17] F. Trani, M. Causà, D. Ninno, G. Cantele and V. Barone, “Density Functional Study of Oxygen Vacancies at the SnO2 Surface and Subsurface Sites,” Physical Review B, Vol. 77, No. 24, 2008, pp. 245410-245417. doi:10.1103/PhysRevB.77.245410
[18] W. Zeng, T.-M. Liu and X. F. Lei, “Hydrogen Sensing Properties of Low-Index Surfaces of SnO2 from First-Principles,” Physica B, Vol. 405, No. 16, 2010, pp. 3458-3462. doi:10.1016/j.physb.2010.05.023
[19] D. F. Cox, T. B. Fryberger and S. Semancik, “Surface Reconstructions of Oxygen Deficient SnO2(110),” Surface Science, Vol. 224, No. 1-3, 1989, pp. 121-142. doi:10.1016/0039-6028(89)90905-9
[20] R. W. Zehner, B. F. Parsons, R. P. Hsung and L. R. Sita, “Tunning the Work Function of Gold with Self-Assembled Monolayers Derived from X-[C6H4-C≡C-]nC6H4-SH (n=0, 1, 2; X= H, F, CH3, CF3, and OCH3),” Langmuir, Vol. 15, No. 4, 1999, pp. 1121-1127.
[21] A. D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics, Vol. 98, No. 7, 1993, pp. 5648-5652. doi:10.1063/1.464913
[22] A. D Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior,” Physical Review A, Vol. 38, No. 6, 1988, pp. 3098-3100. doi:10.1103/PhysRevA.38.3098
[23] C. Lee, W. Yang and R.G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review B, Vol. 37, No. 2, 1988, pp. 785-789. doi:10.1103/PhysRevB.37.785
[24] M. J. Frisch, et al., “Gaussian 03, Revision D.02,” Gaussian, Inc., Wallingford, 2004.
[25] W. R. Wadt and P. J. Hay, “Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi,” Journal of Chemical Physics, Vol. 82, No. 1, 1985, pp. 284-298. doi:10.1063/1.448800
[26] R. Dichfield, W. J. Hehre and J. A. Pople, “Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules,” Journal of Chemical Physics, Vol. 54, No. 2, 1971, pp. 724-728. doi:10.1063/1.1674902
[27] R. W. G. Wyckoff, “Crystal Structures,” 2nd Edition, Wiley Interscience, New York, 1964.
[28] M. Melle-Franco and G. Pacchioni, “CO Adsorption on SnO2(110): Cluster and Periodic Ab Initio Calculations,” Surface Science, Vol. 461, No. 1-3, 2000, pp. 54-66. doi:10.1016/S0039-6028(00)00528-8
[29] M. Calatayud, J. Andrés and A. Beltrán, “A Theoretical Analysis of Adsorption and Dissociation of CH3OH on the Stoichiometric SnO2(110) Surface,” Surface Science, Vol. 430, No. 1-3, 1999, pp. 213-222. doi:10.1016/S0039-6028(99)00507-5
[30] M. Carrara, F. Nüesch and L. Zuppiroli, “Carboxylic Acid Anchoring Groups for the Construction of Self-Assembled Monolayers on Organic Device Electrodes,” Synthetic Metal, Vol. 121, No. 1-3, 2001, pp. 1633-1634. doi:10.1016/S0379-6779(00)00728-1
[31] F. Nüesch, F. Rotzinger, L. Si-Ahmed and L. Zuppiroli, “Chemical Potential Shifts at Organic Device Electrodes Induced by Grafted Monolayers,” Chemical Physics Letters, Vol. 288, No. 5-6, 1998, pp. 861-867. doi:10.1016/S0009-2614(98)00350-9
[32] S. F. J. Appleyard, S. R. Day, R. D. Pickford and M. R. Willis, “Organic Electroluminescent Devices: Enhanced Carrier Injection Using SAM Derivatized ITO Electrodes,” Journal of Materials Chemistry, Vol. 10, No. 1, 2000, pp. 169-173. doi:10.1039/a903708j

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.