Zinc Oxide Nanostructure Thick Films as H2S Gas Sensors at Room Temperature


The ZnO nanostructures have been synthesized and studied as the sensing element for the detection of H2S. The ZnO nanostructures were synthesized by hydrothermal method followed by sonication for different interval of time i.e. 30, 60, 90 and 120 min. By using screen printing method, thick films of synthesized ZnO nanostructure were deposited on glass substrate. Gas sensing properties of ZnO nanostructure thick films were studied for low concentration H2S gas at room temperature. The effects of morphology of synthesized ZnO nanostructure on gas sensing properties were studied and discussed. ZnO nanostructure synthesized by this method can be used as a promising material for semiconductor gas sensor to detect poisonous gas like H2S at room temperature with high sensitivity and selectivity.

Share and Cite:

V. Kalyamwar, F. Raghuwanshi, N. Jadhao and A. Gadewar, "Zinc Oxide Nanostructure Thick Films as H2S Gas Sensors at Room Temperature," Journal of Sensor Technology, Vol. 3 No. 3, 2013, pp. 31-35. doi: 10.4236/jst.2013.33006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. B. Waghulade, P. P. Patil and R. Pasricha, “Synthesis and LPG Sensing Properties of Nano-Sized Cadmium Oxide,” Talanta, Vol. 72, No. 2, 2007, pp. 594-599. doi:10.1016/j.talanta.2006.11.024
[2] P. Feng, Q. Wan and T. H. Wang, “Contact-Controlled Sensing Properties of Flowerlike ZnO Nanostructures,” Applied Physics Letters, Vol. 87, No. 21, 2007, Article ID: 213111.
[3] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, “Fabrication and Ethanol Sensing Characteristics of ZnO Nanowires Gas Sensors,” Applied Physics Letters, Vol. 84, No. 18, 2004, pp. 3654-3656. doi:10.1063/1.1738932
[4] T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin and I. C. Chen, “Highly Sensitive ZnO Nanowires Ethanol Sensor with Pd Adsorption,” Applied Physics Letters, Vol. 91, No. 5, 2007, Article ID: 053111.
[5] X. Deng, F. Wang and Z. Chen, “A Novel Electrochemical Sensor Based on Nano-Structured Film Electrode for Monitoring Nitric Oxide in Living Tissues,” Talanta, Vol. 82, No. 4, 2010, pp. 1218-1224. doi:10.1016/j.talanta.2010.06.035
[6] Y. S. Kim, S.-C. Ha, K. Kim, et al., “Room-Temperature Semiconductor Gas Sensor Based on Nonstoichiometry Tungsten Oxide Nanorod Film,” Applied Physics Letters, Vol. 86, No. 21, 2005, Article ID: 213105.
[7] H. Y. Yu, B. H. Kang, U. H. Pi, C. W. Park, S. Y. Choi and G. T. Kim, “V2O5 Nanowire-Based Nanoelectronic Devices for Helium Detection,” Applied Physics Letters, Vol. 86, No. 25, 2005, Article ID: 253102. doi:10.1063/1.1954894
[8] B. Bott, T. A. Jones and B. Mann, “The Detection and Measurement of CO Using ZnO Single Crystals,” Sensors and Actuators, Vol. 5, No. 1, 1984, pp. 65-73. doi:10.1016/0250-6874(84)87007-9
[9] D. Gruber, F. Kraus and J. Müller, “A Novel Gas Sensor Design Based on CH4/H2/H2O Plasma Etched ZnO Thin Films,” Sensors and Actuators B: Chemical, Vol. 92, No. 1-2, 2003, pp. 81-89. doi:10.1016/S0925-4005(03)00013-3
[10] F. Boccuzzi, A. Chiorino, G. Ghiotti and Guglielminotti, “Infrared Study of H2 Sensing at 300 K Using M/ZnO Systems,” Sensors and Actuators, Vol. 19, No. 2, 1989, pp. 119-124. doi:10.1016/0250-6874(89)87064-7
[11] F. Boccuzzi, E. Guglielminotti and A. Chiorino, “IR Study of Gas-Sensing Materials: NO Interaction on ZnO and TiO2, Pure or Modified by Metals,” Sensors and Actuators B: Chemical, Vol. 7, No. 1-3, 1992, pp. 645-650. doi:10.1016/0925-4005(92)80379-C
[12] N. Koshizaki and T. Oyama, “Sensing Characteristics of ZnO-Based NOx Sensor,” Sensors and Actuators B: Chemical, Vol. 66, No. 1-3, 2000, pp. 119-121. doi:10.1016/S0925-4005(00)00323-3
[13] M. Kudo, T. Kosaka, Y. Takahashi, H. Kokusen, N. Sotani and S. Hasegawa, “Sensing Functions to NO and O2 of Nb2O5- or Ta2O5-Loaded TiO2 and ZnO,” Sensors and Actuators B: Chemical, Vol. 69, No. 1-2, 2000, pp. 10-15. doi:10.1016/S0925-4005(00)00335-X
[14] R.-C. Chang, S.-Y. Chu, P.-W. Yeh, C.-S. Hong, P.-C. Kao and Y.-J. Huang, “The Influence of Mg Doped ZnO Thin Films on the Properties of Love Wave Sensor,” Sensors and Actuators B: Chemical, Vol. 132, No. 1, 2008, pp. 290-295. doi:10.1016/j.snb.2008.01.038
[15] T. Miyata, T. Hikosaka and T. Minami, “High Sensitivity Chlorine Gas Sensors Using Multicomponent Transparent Conducting Oxide Thin Films,” Sensors and Actuators B: Chemical, Vol. 69, No. 1-2, 2000, pp. 16-21. doi:10.1016/S0925-4005(00)00301-4
[16] F. Chaabouni, M. Abaab and B. Rezig, “Metrological Characterization of ZnO Oxygen Sensor at Room Temperature,” Sensors and Actuators B: Chemical, Vol. 100, No. 1-2, 2004, pp. 200-204. doi:10.1016/j.snb.2003.12.059
[17] H. Xu, X. Liu, D. Cui, M. Li and M. Jiang, “A Novel Method for Improving the Performance of ZnO Gas Sensors,” Sensors and Actuators B: Chemical, Vol. 114, No. 1, 2006, pp. 301-307. doi:10.1016/j.snb.2005.05.020
[18] J. K. Xu, Y. P. Chen, D. Y. Chen and J. N. Shen, “Hydrothermal Synthesis and Gas Sensing Characters of ZnO Nanorods,” Sensors and Actuators B: Chemical, Vol. 113, No. 1, 2006, pp. 526-531. doi:10.1016/j.snb.2005.03.097
[19] Z. Jing and J. Zhan, “Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates,” Journal of Advanced Materials, Vol. 20, 2008, pp. 4547-4551.
[20] J. D. Choi and G. M. Choi, “Electrical and CO Gas Sensing Properties of Layered ZnO-CuO Sensor,” Sensors and Actuators B: Chemical, Vol. 69, No. 1-2, 2000, pp. 120-126. doi:10.1016/S0925-4005(00)00519-0
[21] P. Bhattacharyya, P. K. Basu, H. Saha and S. Basu, “Fast Response Methane Sensor Using Nanocrystalline Zinc Oxide Thin Films Derived by Sol-Gel Method,” Sensors and Actuators B: Chemical, Vol. 124, No. 1, 2007, pp. 62-67. doi:10.1016/j.snb.2006.11.046
[22] V. Saxena, D. K. Aswal, M. Kaur, S. P. Koiry, S. K. Gupta, J. V. Yakhmi, R. J. Kshirsagar and S. K. Deshpande, “Enhanced NO2 Selectivity of Hybrid Poly(3-hexylthiophene): ZnO-Nanowire Thin Films,” Applied Physics Letters, Vol. 90, No. 4, 2007, Article ID: 043516. doi:10.1063/1.2432279
[23] T. Brousse and D. M. Schleich, “Sprayed and Thermally Evaporated SnO2 Thin Films for Ethanol Sensors,” Sensors and Actuators B: Chemical, Vol. 31, No. 1-2, 1996, pp. 77-79. doi:10.1016/0925-4005(96)80019-0
[24] A. P. Chatterjee, P. Mitra and A. K. Mukhopadhyay, “Chemical Deposition of ZnO Films for Gas Sensors,” Journal of Materials Science, Vol. 34, No. 17, 1999, pp. 4225-4231. doi:10.1023/A:1004694501646
[25] L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu and W. F. Zhang, “Size Dependence of Gas Sensitivity of ZnO Nanorods,” The Journal of Physical Chemistry C, Vol. 111, No. 5, 2007, pp. 1900-1903. doi:10.1021/jp065963k
[26] S. S. Badadhe and I. S. Mulla, “H2S Gas Sensitive Indium-Doped ZnO Thin Films: Preparation and Characterization,” Sensors and Actuators B: Chemical, Vol. 143, No. 1, 2009, pp. 164-170. doi:10.1016/j.snb.2009.08.056
[27] Z. T. Liu, T. X. Fan, D. Zhang, X. L. Gong and J. Q. Xu, “Hierarchically Porous ZnO with High Sensitivity and Selectivity to H2S Derived from Biotemplates,” Sensors and Actuators B: Chemical, Vol. 136, No. 2, 2009, pp. 499-509. doi:10.1016/j.snb.2008.10.043
[28] D. Wang, X. F. Chu and M. L. Gong, “Hydrothermal Growth of ZnO Nanoscrewdrivers and Their Gas Sensing Properties,” Nanotechnology, Vol. 18, No. 18, 2007, Article ID: 185601. doi:10.1088/0957-4484/18/18/185601

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.