Self-Assembly of Colloidosome Shells on Drug-Containing Hydrogels
Rachel T. Rosenberg, Nily Dan
.
DOI: 10.4236/jbnb.2011.21001   PDF    HTML     6,521 Downloads   11,744 Views   Citations

Abstract

Colloidosomes are composed of an aqueous or hydrogel corethat is coated by a semi-permeable colloidal shell. The properties of the shell can be varied to control the rate of release of encapsulated components such as drugs. Specifi-cally, the pores formed between the colloidal particles suppress transport of large components, while allowing diffusion of smaller ones. Self-assembly of colloidal particles on hydrogel films is a convenient method forcolloidosome synthesis, but to date little is known regarding the effect (if any) of the encapsulated drug on the shell packing density. In this paper we examined self-assembly of colloidal shells on alginate films containing four model drugs: aspirin, caffeine, theophylline and theobromine. We find that the packing density in the colloidal shells is low for all drugs, and ranges between 0.16 and 0.3. There is no clear correlation between drug properties (in particular, water solubility) and the packing density of the self-assembled colloidal shell.

Share and Cite:

R. Rosenberg and N. Dan, "Self-Assembly of Colloidosome Shells on Drug-Containing Hydrogels," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 1, 2011, pp. 1-7. doi: 10.4236/jbnb.2011.21001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Kaasgaard and T. L. Andresen, “Liposomal Cancer Therapy: Exploiting Tumor Characteristics,” Expert Opinion on Drug Delivery, Vol. 7, No. 2 , 2010, pp. 225-243. doi:10.1517/17425240903427940
[2] W. N. Hait, “Targeted Cancer Therapeutics,” Cancer Re- search, Vol. 69, No. 4, 2009, pp. 1263-1267 . doi:10.1158/0008-5472.CAN-08-3836
[3] L. Sagalowicz and M. E. Leser, “Delivery Systems for Liquid Food Products,” Current Opinion in Colloid and Interface Science, Vol. 15, No. 1-2, 2010, pp. 61-72. doi:10.1016/j.cocis.2009.12.003
[4] X. Wu and R. H. Guy, “Applications of Nanoparticles in Topical Drug Delivery and in Cosmetics,” Journal of Drug Delivery Science and Technology, Vol. 19, No. 6, 2009, pp. 371-384.
[5] J. Pardeike, A. Hommoss and R. H. Muller, “Lipid Nanoparticles (SLN, NLC) in Cosmetic and Pharma- ceutical Dermal Products,” International Journal of Phar- maceutics, Vol. 366, No. 1-2, 2009, pp 170-184. doi:10.1016/j.ijpharm.2008.10.003
[6] D. S. Pisal, M. P. Kosloski and S. V. Balu-Iyer, “Delivery of Therapeutic Proteins,” Journal of Pharmaceutical Sciences, Vol. 99, No. 6, 2010, pp. 2557-2575. doi:10.1002/jps.22054
[7] A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A.R. Bausch and D. A. Weitz, “Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles,” Science, Vol. 298, No. 5595, 2002, pp. 1006-1009. doi:10.1126/science.1074868
[8] D. Lee and D. A Weitz, “Double Emulsion-Templated- nanoparticlecolloidosomes with Selective Permeability,” Advanced Materials, Vol. 20, No. 18, 2002, pp. 3498- 3503. doi:10.1002/adma.200800918
[9] D. Lee and D.A Weitz, “Nonspherical Colloidosomes with Multiple Compartments from Double Emulsions,” Small, Vol. 5, No. 17, 2009, pp. 1932-1935. doi:10.1002/smll.200900357
[10] S. Shilpi, A. Jain, Y. Gupta and S. K. Jain “Colloidosomes: an Emerging Vesicular System in Drug Delivery,” Critical Reviews in Therapeutic Drug Carrier Systems, Vol. 24, No. 4, 2007, pp. 361-391.
[11] J. W. Kim, A. Fernandez-Nieves A, N. Dan N, A. S. Utada AS, M. Marquez and D. A. Weitz, “Colloidal Assembly Route for Responsive Colloidosomes with Tunable Permeability,” Nano Letters, Vol. 7, No. 9, 2007, pp. 2876-2880. doi:10.1021/nl0715948
[12] A. S. Miguel, J. Scrimgeour, J. E. Curtis and S. H. Behrens, “Smart Colloidosomes with a Dissolution Trigger,” Soft Matter, Vol. 6, No. 14, 2010, pp. 3163-3166. doi:10.1039/c002930k
[13] R. McGorty, J. Fung, D. Kaz and V. N. Manoharan, “Colloidal Self-Assembly at an Interface,” Materials Today, Vol. 13, No. 6, 2010, pp. 34-42. doi:10.1016/S1369-7021(10)70107-3
[14] M. H. Lee, V. Prasad and D. Lee, “Microfluidic Fabrication of Stable Nanoparticle-Shelled Bubbles,” Langmuir, Vol. 26, No. 4, 2010, pp. 2227-2230. doi:10.1021/la904425v
[15] J. Texter, “Templating Hydrogels,” Colloid and Polymer Science, Vol. 287, No. 3, 2009, pp. 313-321. doi:10.1007/s00396-008-1990-z
[16] X. C. Yang and Z. H. Mo “Microcapsules from the Self-Assembly of Nanoparticles at Interfaces,” Progress in Chemistry, Vol. 22, No. 9, 2010, pp. 1735-1740.
[17] R. T. Rosenberg and N. R. Dan, “Controlling Surface Porosity and Release from Hydrogels Using a Colloidal Particle Coating,” Journal of Colloid and Interface Science, Vol. 349, No. 2, 2010, pp. 498-504. doi:10.1016/j.jcis.2010.05.095
[18] R. T. Rosenberg and N. R. Dan, “Diffusion through Colloidosome Shells,” Journal of Colloid and Interface Science, 2010, In press.
[19] S. J. Siegel, J. B. Kahn, K. Metzger K, K. I. Winey, K. Werner and N. Dan, “Effect of Drug Type on the Degradation Rate of PLGA Matrices,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 64, No. 3, 2006, pp. 287-293. doi:10.1016/j.ejpb.2006.06.009
[20] R. Rosenberg, W. Devenney, S. Siegel and N. Dan, “Anomalous Release of Hydrophilic Drugs from Poly (Epsilon-Caprolactone) Matrices,” Molecular Pharmaceutics, Vol. 4, No. 6. 2007, pp. 943-948. doi:10.1021/mp700097x
[21] A. Meyer, T. Ngiruwonsanga and G. Henze, “Deter- mination of Adenine, Caffeine, Theophylline and Theo- bromine by HPLC with Amperometric Detection,” Journal of Analytical Chemistry, Vol. 356, 1996, pp. 284-287.
[22] I. P. o. C. S. (IPCS), http://www.inchem.org/documents/pims/pharm/aspirin.htm#SectionTitle:3.2%20Chemical%20structure
[23] J. B. Thomas, J. H. Yen, M. M. Schantz, B. J. Porter, and K.E. Sharpless, “Determination of Caffeine, Theobromine, and Theophylline in Standard Reference Material 2384, Baking Chocolate, Using Reversed-Phase Liquid Chro- matography,” Journal of Agricultural and Food Che- mistry, Vol. 52, No. 11, 2004, pp. 3259-3263. doi:10.1021/jf030817m
[24] P. Sriamornsak and R. A. Kennedy, “Effect of Drug Solubility on Release Behavior of Calcium Polysaccharide Gel-coated Pellets,” European Journal of Pharmaceutical Sciences, Vol. 32, No. 3, 2007, pp. 231-239. doi:10.1016/j.ejps.2007.08.001
[25] D. W. Green and R. H. Perry, “Perry’s Chemical Engineers’ Handbook,” 8th Edition, McGraw-Hill, Columbus, 2008.
[26] M. Grassi, I. Colombo and R. Lapasin, “Experimental Determination of the Theophylline Diffusion Coefficient in Swollen Sodium-Alginate Membranes,” Journal of Controlled Release, Vol. 76, No. 1-2, 2001, pp. 93-105. doi:10.1016/S0168-3659(01)00424-2
[27] R. A. Thakur and B. B. Michniak, “Transdermal and Buccal Delivery of Methylxanthines through Human Tissue in Vitro,” Drug Development and Industrial Pharmacy, Vol. 33, No. 5, 2007, pp. 513-521. doi:10.1080/03639040600901994
[28]

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.