Antigravity—Its Manifestations and Origin


Dark energy has been introduced in order to explain the observed acceleration of the expansion of our Universe. It seems to be distributed almost uniformly and it has an essential influence on the present value of the Hubble constant which characterizes the rate of this expansion. The Newtonian theory of gravitation is formulated so that the laws of conservation of energy and momentum hold. However, the Universe is designed so that the total amount of energy is slowly, but continually increasing, since its expansion is accelerating. Our examples show that even the Solar System and also our Galaxy imperceptibly expand thanks to dark energy whose origins are tiny antigravity forces. We claim that these forces appear due to the finite speed of gravitational interaction, which causes gravitational aberration effects. We show that effects of dark energy are observable; they are not only globally, but also in local systems. These effects can be measured and are comparable with the present value of the Hubble constant.

Share and Cite:

M. Křížek and L. Somer, "Antigravity—Its Manifestations and Origin," International Journal of Astronomy and Astrophysics, Vol. 3 No. 3, 2013, pp. 227-235. doi: 10.4236/ijaa.2013.33027.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Krízek, J. Brandts and L. Somer, “Is Gravitational Aberration Responsible for the Origin of Dark Energy?” In: C. A. Del Valle and D. F. Longoria, Eds., Dark Energy: Theory, Implications and Roles in Cosmology, Nova Science Publishers, Inc., New York, 2012, pp. 29-57.
[2] M. Krízek, “Does a Gravitational Aberration Contribute to the Accelerated Expansion of the Universe?” Communications in Computational Physics, Vol. 5, No. 5, 2009, pp. 1030-1044.
[3] M. Krízek, “Dark Energy and Anthropic Principle,” New Astronomy, Vol. 17, No. 1, 2012, pp. 1-7. doi:10.1016/j.newast.2011.05.003
[4] W. J. Zhang, Z. B. Li and Y. Lei, “Experimental MeasUrements of Growth Patterns on Fossil Corals: Secular Variation in Ancient Earth-Sun Distance,” Chinese Science Bulletin, Vol. 55, No. 35, 2010, pp. 4010-4017. doi:10.1007/s11434-010-4197-x
[5] M. Carrera and D. Giulini, “Influence of Global CosmoLogical Expansion on Local Dynamics and Kinematics,” Reviews of Modern Physics, Vol. 82, No. 1, 2010, pp. 169-208. doi:10.1103/ RevModPhys.82.169
[6] F. I. Cooperstock, V. Faraoni and D. N. Vollick, “The Influence of the Cosmological Expansion on Local Systems,” The Astrophysical Journal, Vol. 503, No. 1, 1998, pp. 61-66. doi:10.1086/305956
[7] S. Perlmutter, G. Aldering, et al., “Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” The Astrophysical Journal, Vol. 517, No. 2, 1999, pp. 565-586. doi:10.1086/307221
[8] A. G. Riess, A. V. Filippenko, et al., “Observational EviDence from Supernovae for an Accelerating Universe and a Cosmological Constant,” The Astrophysical Journal, Vol. 116, No. 3, 1998, pp. 1009-1038. doi:10.1086/300499
[9] M. Krízek and J. Brandts, “Manifestations of Dark Energy in the Dynamics of the Solar System,” In: A. G. Kosovichev, et al., Eds., Proceedings of the IAU Symposium No. 264, Solar and Stellar Variability: Impact on the Earth and Planets, Cambridge University Press, Cambridge, 2010, pp. 410-412.
[10] L. R. Kump, J. F. Kastings and R. G. Crane, “The Earth System,” Prentice Hall, New Jersey, 1999.
[11] K. Tsiganis, R. Gomes, A. Morbidelli and H. F. Levison, “Origin of the Orbital Architecture of the Giant Planets of the Solar System,” Nature, Vol. 435, No. 7041, pp. 459-461. doi:10.1038/nature03539
[12] R. J. Bouwens, et al., “A Candidate Redshift z ≈ 10 Galaxy and Rapid Changes in That Population at an Age of 500 Myr,” Nature, Vol. 469, No. 7331, 2011, pp. 504-507. doi:10.1038/nature09717
[13] I. Trujillo, C. J. Conselice, et al., “Strong Size Evolution of the Most Massive Galaxies Since z ~ 2,” Monthly Notices of the Royal Astronomical Society, Vol. 382, No. 1, 2007, pp. 109-120.
[14] A. Ferré-Mateu and I. Trujillo, “Superdense Massive Galaxies in the Nearby Universe,” In: G. Bruzual and S. Charlot, Eds., Proceedings of the 27th General Assembly of IAU, S262, Kluwer, Dordrecht, 2010, pp. 331-332.
[15] J. van de Sande, et al., “The Stellar Velocity Dispersion of a Compact Massive Galaxy at z = 1.80 Using XShooter Confirmation of the Evolution in the Mass-Size and Mass-Dispersion Relations,” The Astrophysical Journal Letters, Vol. 736, 2011, 7 p.
[16] I. Damjanov, et al., “Red Nuggets at High Redshift: Structural Evolution of Quiescent Galaxies over 10 Gyr of Cosmic History,” The Astrophysical Journal Letters, Vol. 739, No. 2, 2011, p. L44. doi:10.1088/2041-8205/739/2/L44
[17] V. Gonzáles, I. Labbé, R. Bouwens, et al., “Evolution of Galaxy Stellar Mass Functions, Mass Densities, and Mass to Light Ratios from z ~ 7 to z ~ 4,” The Astrophysical Journal Letters, Vol. 735, No. 2, 2011, p. L34. doi:10.1088/2041-8205/735/2/L34
[18] I. Trujillo, “Origin and Fate of the Most Massive Galaxies,” In: M. R. Zapatero, et al., Eds., Highlights of Spanish Astrophysics VI, Proceedings of the 9th Scientific Meeting of the Spanish Astronomical Society, Madrid, 2010, pp. 120-130.
[19] F. Buitrago, et al., “Shaping Massive Galaxies: Their Morphology and Kinematics at z = 1 - 3,” In: M. R. Zapatero, et al., Eds., Highlights of Spanish Astrophysics VI, Proceedings of the 9th Scientific Meeting of the Spanish Astronomical Society, Madrid, 2010, pp. 154-160.
[20] P. J. E. Peebles, “Principles of Physical Cosmology,” Princeton University Press, New Jersey, 1993.
[21] G. Rudnick, et al., “Measuring the Average Evolution of Luminous Galaxies at z < 3: The Rest-Frame Optical Luminosity Density, Spectral Energy Distribution, and Stellar Mass Density,” The Astrophysical Journal, Vol. 650, No. 2, 2006, pp. 624-643. doi:10.1086/507123
[22] A. M. Swinbank, et al., “Intense Star Formation within Resolved Compact Regions in a Galaxy at z = 2.3,” Nature, Vol. 464, No. 7289, 2010, pp. 733-736. doi:10.1038/nature08880
[23] G. A. Shields, “A Brief History of Active Galactic Nuclei,” Publications—Astronomical Society of the Pacific, Vol. 111, No. 760, 1999, pp. 661-678. doi:10.1086/316378
[24] W. E. Harris, “Catalog of Parameters for Milky Way Globular Clusters: The Database,” The Astrophysical Journal, Vol. 112, No. 10, 1996, p. 1487.
[25] P. Kroupa, “Star-Cluster Formation and Evolution,” In: B. G. Elmegreen and J. Palous, Eds., IAU S 237, Triggered Star Formation in a Turbulent ISM, Cambridge University Press, Cambridge, 2007, pp. 230-237.
[26] E. N. Glass, “Gravothermal Catastrophe, an Example,” Physical Review D, Vol. 82, No. 4, 2010, Article ID: 044039. doi:10.1103/PhysRevD.82.044039
[27] J. Southworth, T. C. Hinse, et al., “Physical Properties of the 0.94-Day Period Transiting Planetary System WASP-18,” Cornell University, Ithaca, 2009. arXiv:0910.4875v1.
[28] G. A. Krasinski and V. A. Brumberg, “Secular Increase of Astronomical Unit from Analysis of the Major Planet Motions, and Its Interpretation,” Celestial Mechanics and Dynamical Astronomy, Vol. 90, No. 3-4, 2004, pp. 267-288. doi:10.1007/s10569-004-0633-z
[29] L. Amendola and S. Tsujikawa, “Dark Energy: Theory and Observations,” Cambridge University Press, Cambridge, 2010. doi:10.1017/CBO9780511750823
[30] M. Krízek, “Numerical Experience with the Finite Speed of Gravitational Interaction,” Mathematics and Computers in Simulation, Vol. 50, No. 1, 1999, pp. 237-245. doi:10.1016/S0378-4754(99)00085-3
[31] H. Poincaré, “Sur la Dynamique de l’électron,” Comptes Rendus de l’Académie des Sciences, Vol. 140, 1905, pp. 1504-1508.
[32] S. Carlip, “Aberration and the Speed of Gravity,” Physics Letters A, Vol. 267, No. 2, 2000, pp. 81-87. doi:10.1016/S0375-9601(00)00101-8
[33] C. G. McVittie, “The Mass-Particle in Expanding Universe,” Monthly Notices of the Royal Astronomical Society, Vol. 93, 1933, pp. 325-339.
[34] S. Perlmutter, S. Gabi, et al., “Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35,” The Astrophysical Journal, Vol. 483, No. 2, 1997, pp. 565-581. doi:10.1086/304265
[35] A. G. Riess, L.-G. Strolger, et al., “New Hubble Space Telescope Discoveries of Type Ia Supernova at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy,” The Astrophysical Journal, Vol. 659, No. 1, 2007, pp. 98-121. doi:10.1086/510378
[36] B. Mashhoon, N. Mobed and D. Singh, “Tidal Dynamics in Cosmological Spacetimes,” Classical and Quantum Gravity, Vol. 24, No. 20, 2007, pp. 5031-5046. doi:10.1088/0264-9381/24/20/008
[37] B. Tinsley, “Accelerating Universe Revisited,” Nature, Vol. 273, 1978, pp. 208-211. doi:10.1038/ 273208a0

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.