Holographic-Type Gravitation via Non-Differentiability in Weyl-Dirac Theory


In the Weyl-Dirac non-relativistic hydrodynamics approach, the non-linear interaction between sub-quantum level and particle gives non-differentiable properties to the space. Therefore, the movement trajectories are fractal curves, the dynamics are described by a complex speed field and the equation of motion is identified with the geodesics of a fractal space which corresponds to a Schrodinger non-linear equation. The real part of the complex speed field assures, through a quantification condition, the compatibility between the Weyl-Dirac non-elativistic hydrodynamic model and the wave mechanics. The mean value of the fractal speed potential, identifies with the Shanon informational energy, specifies, by a maximization principle, that the sub-quantum level “stores” and “transfers” the informational energy in the form of force. The wave-particle duality is achieved by means of cnoidal oscillations modes of the state density, the dominance of one of the characters, wave or particle, being put into correspondence with two flow regimes (non-quasi-autonomous and quasi-autonomous) of the Weyl-Dirac fluid. All these show a direct connection between the fractal structure of space and holographic principle.

Share and Cite:

M. Pricop, M. Răut, Z. Borsos, A. Baciu and M. Agop, "Holographic-Type Gravitation via Non-Differentiability in Weyl-Dirac Theory," Journal of Modern Physics, Vol. 4 No. 8A, 2013, pp. 165-171. doi: 10.4236/jmp.2013.48A016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Weyl, Annalen der Physik, Vol. 365, 1919, pp. 481-500. doi:10.1002/andp.19193652104
[2] P. A. M. Dirac, Proceedings of the Royal Society of London A, Vol. 333, 1973, pp. 403-418. doi:10.1098/rspa.1973.0070
[3] M. Israelit, “The Weyl-Dirac Theory and Our Universe,” Nova, New York, 1999.
[4] D. Gregorash and G. Papini, Nuovo Cimento B, Vol. 63, 1981, pp. 487-509.
[5] W. R. Wood and G. Papini, Foundations of Physics Letters, Vol. 6, 1993, pp. 207-223. doi:10.1007/BF00665726
[6] W. R. Wood and G. Papini, Physical Review D, Vol. 45, 1992, pp. 3617-3627. doi:10.1103/PhysRevD.45.3617
[7] M. Agop and P. Nica, Classical and Quantum Gravity, Vol. 16, 1999, pp. 3367-3380. doi:10.1088/0264-9381/16/10/324
[8] M. Agop and P. Nica, Classical and Quantum Gravity, Vol. 17, 2000, pp. 3627-3644. doi:10.1088/0264-9381/17/18/303
[9] M. Agop, P. D. Ioannou and C. Buzea, Classical and Quantum Gravity, Vol. 18, 2001, pp. 4743-4762. doi:10.1088/0264-9381/18/22/303
[10] M. Agop, P. Nica and M. Girtu, General Relativity and Gravitation, Vol. 40, 2008, pp. 35-55. doi:10.1007/s10714-007-0519-y
[11] D. Bohm, Physical Review, Vol. 85, 1952, pp. 166-179. doi:10.1103/PhysRev.85.166
[12] G. Papini, “Berry’s Phase and Particle Interferometry in Weak Gravitational Fields,” In: J. Aundretsch and V. de Sabbata, Eds. Quantum Mechanics in Curved Space-Time, Plenum Press, New York, 1990, pp. 473-483. doi:10.1007/978-1-4615-3814-1_15
[13] A. Feoli, W. R. Wood and G. Papini, “A Dynamical Symmetry Breaking Model in Weyl Space,” Journal of Mathematical Physics, Vol. 39, 1998, p. 3322.
[14] G. Papini, Il Nuovo Cimento B Series, Vol. 68, 1970, pp. 1-10. doi:10.1007/BF02710354
[15] J. Anandan, Physical Review D, Vol. 15, 1977, pp. 1448-1457. doi:10.1103/PhysRevD.15.1448
[16] R. M. Wald, “General Relativity,” University of Chicago Press, Chicago, 1984. doi:10.7208/chicago/9780226870373.001.0001
[17] S. Weinberg, “Gravitation and Cosmology,” Wiley, New York, 1972.
[18] J. L. Synge, “Relativity: The General Theory,” North-Holland, Amsterdam, 1964.
[19] R. Adler, M. Bazin and M. Schiffer, “Introduction to General Relativity,” McGraw-Hill, New York, 1965.
[20] G. ‘tHooft, Nuclear Physics B, Vol. 190, 1981, pp. 455-478. doi:10.1016/0550-3213(81)90442-9
[21] M. S. El Naschie, O. E. Rossler and I. Prigogine, “Quantum Mechanics, Diffusion and Chaotic Fractals,” Elsevier, Oxford, 1995.
[22] P. Weibel, G. Ord and O. E. Rosler, “Space Time Physics and Fractality,” Springer, New York, 2005. doi:10.1007/3-211-37848-0
[23] L. Nottale, “Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity,” World Scientific Singapore City, 1993. doi:10.1142/1579
[24] L. Nottale, “Scale Relativiry and Fractal Space-Time—A New Approach to Unifying Relativity and Quantum Mechanics,” Imperial College Press, London, 2011.
[25] G. Ord, Journal of Physics A: Mathematical and General, Vol. 16, 1983, p. 1869. doi:10.1088/0305-4470/16/9/012
[26] M. Agop, N. Forna, I. CasianBotez and C. J. Bejenariu, Journal of Computational and Theoretical Nanoscience, Vol. 5, 2008, p. 483.
[27] I. CasianBotez, M. Agop, P. Nica, V. Paun and G. V. Munceleanu, Journal of Computational and Theoretical Nanoscience, Vol. 7, 2010, pp. 2271-2280. doi:10.1166/jctn.2010.1608
[28] G. V. Munceleanu, V. P. Paun, I. Casian-Botez and M. Agop, International Journal of Bifurcation and Chaos, Vol. 21, 2011, pp. 603-618.
[29] M. R. Fazlollah, “An Introduction to Information Theory,” Dover Publications, New York, 1994.
[30] B. B. Mandelbrot, “The Fractal Geometry of Nature,” Freeman, San Francisco, 1983.
[31] J. V. Armitage and W. F. Eberlein, “Elliptic Functions,” Cambridge University Press, Cambridge, 2006.
[32] D. L. Aronstein and C. R. Strout Jr., Physical Review A, Vol. 55, 1997, pp. 1050-2947.
[33] S. Janiszewski and A. Karch, Physical Rewiew Letters, Vol. 110, 2013, Article ID: 081601. doi:10.1103/PhysRevLett.110.081601

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.