ANP impairs the dose-dependent stimulatory effect of ANG II or AVP on H+-ATPase subcellular vesicle trafficking

Abstract


The effect of angiotensin II (ANG II) or arginine vasopressin (AVP) alone or plus atrial natriuretic peptide (ANP) on H+-ATPase subcellular vesicle trafficking was investigated in MDCK cells following intracellular pH (pHi) acidification by exposure to20 mMNH4Cl for 2 min in a Na+-free solution containing Schering 28080, conditions under which H+-AT-Pase is the only cell mechanism for pHi recovery. Using the acridine orange fluorescent probe (5mM) and confocal microscopy, the vesicle movement was quantified by determining, for each experimental group, the mean slope of the line indicating the changes in apical/basolateral fluorescence density ratio over time during the first 5.30 min of the pHi recovery period. Under the control conditions, the mean slope was 0.079 ± 0.0033 min-1 (14) and it increased significantly with ANG II [10-12 and 10-7 M, respectively to 0.322 ± 0.038 min-1 (13) and 0.578 ± 0.061 min-1 (12)] or AVP [10-12 and 10-6 M, respectively to 0.301 ± 0.018 min-1 (12) and 0.687 ± 0.049 min-1 (11)]. However, in presence of ANP (10-6 M, decreases cytosolic free calcium), dimethyl-BAPTA/AM (5 × 10-5 M, chelates intracellular calcium) or colchicine (10-5 M, 2-h preincubation; inhibits microtubule-dependent vesicular trafficking) alone or plus ANG II or AVP the mean slopes were similar to the control values, indicating that such agents blocked the stimulatory effect of ANG II or AVP on vesicle trafficking. The results suggest that the pathway responsible for the increase in cytosolic free calcium and the microtu-bule-dependent vesicular trafficking are involved in this hormonal stimulating effect. Whether cytosolic free calcium reduction represents an important direct mechanism for ANP impairs the dose-dependent stimulatory effect of ANG II or AVP on H+-ATPase subcellular vesicle trafficking, or is a side effect of other signaling pathways which will require additional studies.


Share and Cite:

Oliveira-Souza, M. , Morethson, P. , Malnic, G. and Mello-Aires, M. (2013) ANP impairs the dose-dependent stimulatory effect of ANG II or AVP on H+-ATPase subcellular vesicle trafficking. Open Journal of Molecular and Integrative Physiology, 3, 95-103. doi: 10.4236/ojmip.2013.33015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Wagner, C.A., Giebisch, G., Lang, F. and Geibel, J.P. (1998) Angiotensin II stimulates vesicular H+-ATPase in rat proximal tubular cells. Proceeding of the National Academy of Sciences of the United States of America, 95, 9665-9668.
[2] Barreto-Chaves, M.L.M. and Mello-Aires, M. (1996) Effect of luminal angiotensin II and ANP on early and late cortical distal tubule HCO3- reabsorption. American Journal of Physiology: Renal Physiology, 271, F977-F984.
[3] Wagner, C.A., Mohebbi, N., Uhlig, U., Giebisch, G.H., Breton, S., Brown, D. and Geibel, J.P. (2011) Angiotensin II stimulates H+-ATPase activity in intercalated cells from isolated mouse connecting tubules and cortical collecting ducts. Cellular Physiology and Biochemistry, 28, 513-520. doi:10.1159/000335112
[4] Pech, V., Zheng, W., Pham, T.D., Verlander, J.W. and Wall, S.M. (2008) Angiotensin II activates H+-ATPase in type A intercalated cells. Journal of the American Society of Nephrology, 19, 84-91. doi:10.1681/ASN.2007030277
[5] Rothenberger, F., Velic, A., Stehberger, P.A., Kovacikova, J. and Wagner, C.A. (2007) Angiotensin II stimulates vacuolar H+-ATPase activity in renal acidsecretory intercalated cells from the outer medullary collecting duct. Journal of the American Society of Nephrology, 18, 2085-2093. doi:10.1681/ASN.2006070753
[6] Tojo, A., Tisher, C.C. and Madsen, K.M. (1994) Angiotensin II regulates H+-ATPase activity in rat cortical collecting duct. American Journal of Physiology: Renal Physiology, 267, F1045-F1051.
[7] Wall, S.M., Fischer, M.P., Glapion, D.M. and De La Calzada, M. (2003) ANG II reduces net acid secretion in rat outer medullary collecting duct. American Journal of Physiology: Renal Physiology, 285, F930-F937.
[8] Oliveira-Souza, M., Malnic, G. and Mello-Aires, M. (2002) Atrial natriuretic peptide impairs the stimulatory effect of angiotensin II on H+-ATPase. Kidney International, 62, 1693-1699. doi:10.1046/j.1523-1755.2002.00604.x
[9] Barreto-Chaves, M.L.M. and Mello-Aires, M. (1997) Luminal arginine vasopressin stimulates Na+-H+ exchange and H+-ATPase in cortical distal tubule via V1 receptor. Kidney International, 52, 1035-1041. doi:10.1038/ki.1997.425
[10] Fejes-Toth, G. and Naray-Fejes-Toth, A. (1989) Isolated principal and intercalated cells: Hormone responsiveness and Na+-K+-ATPase activity. American Journal of Physiology: Renal Physiology, 256, F742-F750.
[11] Ando, Y., Tabei, K. and Asano, Y. (1991) Luminal vasopressin modulates transport in the rabbit cortical collecting duct. Journal of Clinical Investigation, 88, 952-959. doi:10.1172/JCI115398
[12] Borensztein, P., Juvin, P., Vernimmen, C., Poggioli, J., Paillard, M. and Bichara, M. (1993) cAMP-dependent control of Na+/H+ antiport by AVP, PTH, and PGE2 in rat medullary thick ascending limb cells. American Journal of Physiology: Renal Physiology, 264, F354-F364.
[13] Oliveira-Souza, M., Musa-Aziz, R., Malnic, G. and Mello-Aires, M. (2004) Arginine vasopressin stimulates H+-ATPase in MDCK cells via V1 (cell Ca2+) and V2 (cAMP) receptors. American Journal of Physiology: Renal Physiology, 286, F402-F408. doi:10.1152/ajprenal.00121.2003
[14] Schwartz, J.H., Masino, S.A., Nichols, R.D. and Alexander, E.A. (1994) Intracellular modulation of acid secretion in rat inner medullary collecting duct cells. American Journal of Physiology: Renal Physiology, 266, F94-F101.
[15] Hou, Y., Wu, Q. and Delamere, N.A. (2001) H+-ATPase-mediated cytoplasmic pH-responses associated with elevation of cytoplasmic calcium in cultured rabbit nonpigmented ciliary epithelium. Journal of Membrane Biology, 182, 81-90.
[16] Wagner, C.A., Finberg, K.E., Breton, S., Marshansky, V., Brown, D. and Geibel J.P. (2004) Renal vacuolar H+-ATPase. Physiological Reviews, 84, 1263-1314. doi:10.1152/physrev.00045.2003
[17] Paunescu, T.G., Ljubojevic, M., Russo, L.M., Winter, C., McLaughlin, M.M., Wagner, C.A., Breton, S. and Brown, D. (2010) cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells. American Journal of Physiology: Renal Physiology, 298, F643-F654. doi:10.1152/ajprenal.00584.2009
[18] Brewer, C.B. and Roth, M.G. (1995) Polarized exocytosis in MDCK cells is regulated by phosphorylation. Journal of Cell Science, 108, 789-796.
[19] Mostov, K.E., Verges, M. and Altschuler, Y. (2000) Membrane traffic in polarized epithelial cells. Current Opinion in Cell Biology, 12, 483-490. doi:10.1016/S0955-0674(00)00120-4
[20] Brown, D., Sabolic, I. and Gluck, S. (1991) Colchicine-induced redistribution of proton pumps in kidney epithetlial cells. Kidney International, 40, S79-S83.
[21] Richardson, J., Scalera, V. and Simmons, N.L. (1981) Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochimica et Biophysica Acta, 673, 26-36. doi:10.1016/0304-4165(81)90307-X
[22] Oliveira-Souza, M. and Mello-Aires, M. (2000) Interaction of angiotensin II and atrial natriuretic peptide on pHi regulation in MDCK cells. American Journal of Physiology: Renal Physiology, 279, F944-F953.
[23] Gekle, M., Wuensch, S., Oberleithner, H. and Silbernagl, S. (1994) Characterization of two MDCK cell subtypes as a model system to study principal cell and intercalated cell properties. Pflügers Archiv, 428, 157-162. doi:10.1007/BF00374853
[24] Clerc, S. and Barenholz, Y. (1998) A quantitative model for using acridine orange as a transmembrane pH gradient probe. Analytical Biochemistry, 259, 104-111.
[25] Malnic, G. and Geibel, J.P. (2000) Cell pH and H+ secretion by S3 segment of mammalian kidney: Role of H+-ATPase and Cl-. Journal of Membrane Biology, 178, 115-125. doi:10.1007/s002320010019
[26] Yang, L., Leong, P.K., Chen, J.O., Patel, N., Hamm-Alvarez, S.F. and McDonough, A.A. (2002) Acute hypertension provokes internalization of proximal tubule NHE3 without inhibition of transport activity. American Journal of Physiology: Renal Physiology, 282, F730-F740.
[27] Bevensee, M.W.B. (2008) Control of Intracellular pH, In: Seldin, D.W. and Giebisch, G., Eds., The Kidney, Physiology and Pathophysiology, Elsevier, New York, 1429-1480.
[28] Fernandez, R. and Malnic, G. (1998) H+-ATPase and Cl- interaction in regulation of MDCK cell pH. Journal of Membrane Biology, 163, 137-145. doi:10.1007/s002329900378
[29] Fernandez, R., Oliveira-Souza, M. and Malnic, G. (2000) Na+-independent proton secretion in MDCK-C11 cells. Pflügers Archiv, 441, 287-293. doi:10.1007/s004240000411
[30] Carraro-Lacroix, L.R. and Malnic, G. (2006) Signaling pathways involved with the stimulatory effect of Angiotensin II on vacuolar H+-ATPase in proximal tubule cells. Pflügers Archiv, 452, 728-736. doi:10.1007/s00424-006-0085-2
[31] Pech, V., Zheng, W., Pham, T.D., Verlander, J.W. and Wall, S.M. (2008) Angiotensin II activates H+-ATPase in type A intercalated cells. Journal of the American Society of Nephrology, 19, 84-91. doi:10.1681/ASN.2007030277
[32] Gong, F., Alzamora, R., Smolak, C., Li, H., Naveed, S., Neumann, D., Hallows, K.R. and Pastor-Soler, N.M. (2010) Vacuolar H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase. American Journal of Physiology: Renal Physiology, 298, F1162-F1169. doi:10.1152/ajprenal.00645.2009
[33] Van Baal, J., Raber, G., De Slegte, J., Pieters, R., Bindels, R.J.M. and Willems, P.H.G.M. (1996) Vasopressin-stimulated Ca2+ reabsorption in rabbit cortical collecting system: Effects on cAMP and cytosolic Ca2+. Pflügers Archiv, 433, 109-115. doi:10.1007/s004240050255
[34] Ishikawa, S., Saito, T., Okada, K., Kuzuya, T., Kangawa, K. and Matsuo, H. (1985) Atrial natriuretic factor increases cyclic GMP and inhibits cyclic AMP in rat renal papillary collecting tubule cells in culture. Biochemical and Biophysical Research Communications, 130, 1147-1153. doi:10.1016/0006-291X(85)91735-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.